Матан, 1 семестр, 2014/15 — различия между версиями
Материал из SEWiki
(→Домашнее задание к 25.09.14) |
(→Домашнее задание к 02.10.14) |
||
Строка 24: | Строка 24: | ||
# (4 балла) Докажите, что если последовательность <math>x_n </math> имеет предел <math>a </math>, то последовательность <math>y_n=\frac{x_1+x_2+\dots + x_n}{n} </math> тоже имеет предел <math>a </math>. | # (4 балла) Докажите, что если последовательность <math>x_n </math> имеет предел <math>a </math>, то последовательность <math>y_n=\frac{x_1+x_2+\dots + x_n}{n} </math> тоже имеет предел <math>a </math>. | ||
− | == | + | == Старые == |
− | + | ||
− | + | [[Домашнее задание к 02.10.14, матан, 1 семестр|02.10.14]]: [[Медиа:Matan141002.tex|TeX]], [[Медиа:Matan141002.pdf|PDF]] | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | [[Домашнее задание к 25.09.14]] | + | [[Домашнее задание к 25.09.14, матан, 1 семестр|25.09.14]] |
− | + | 18.09.14: [[Медиа:Dz2.pdf|PDF]]. В рамках усиления контроля предлагается его писать и сдавать в начале занятия. | |
− | [[Домашнее задание к 11.09.14, матан, 1 семестр]] | + | [[Домашнее задание к 11.09.14, матан, 1 семестр|11.09.14]] |
= Группа Александра Логунова = | = Группа Александра Логунова = |
Версия 13:40, 6 октября 2014
Содержание
Группа Фёдора Петрова
Домашнее задание на семестр
Отчётность: без понятия
- Существует ли биективный многочлен :
Домашнее задание к 09.10.14
- Пусть и --- последовательности вещественных чисел. Пусть ,, а функции таковы, что для любого при выполнено , а при выполнено . Найдите предел и функцию такую, что для любого при выполнено , если последовательность задана соотношением:
- (0.5) ;
- (0.5) ;
- (1) ;
- (1) (считать );
- (1) (считать );
- (1) ;
- (1) ;
- (2 балла) Докажите, что последовательность имеет конечный предел.
- (3 балла) Докажите, что последовательность вещественных чисел, удовлетворяющая рекуррентному соотношению , сходится.
- (4 балла) Докажите, что если последовательность имеет предел , то последовательность тоже имеет предел .
Старые
18.09.14: PDF. В рамках усиления контроля предлагается его писать и сдавать в начале занятия.
Группа Александра Логунова
Домашнее задание к 02.10.14
Здравствуйте, дорогие студенты! ... По просьбам трудящихся дз стало меньше, чем в прошлый раз, но это лишь временная мера в связи с наличием старого дз, которое еще не все сдали. Напоминаю, что теперь deadline для старого Дз - до 19 00 воскресенья, а новое дз нужно сдать в ПИСЬМЕННОМ виде на следующей паре. В приложении также лежит разбор задачи про sin(n^2), которую разбирали в классе. Удачи, А. Логунов
Домашнее задание к 25.09.14
Каждая задача стоит от 1-го до 4-ех баллов. Рекомендуется решить все задачи, которые весят 1 - 2 балла. Остальные задачи считайте бонусными. В приложении лежит домашнее задание, в котором исправили нумерацию, и добавили условие про замкнутость в 7-ой задаче. Добавился пункт в 7-ой задаче, когда шары открытые, он оценивается в 1 балл.
Насчет субботы... На этой неделе ничего не будет, а на следующей начнется. Вопросы можно также задавать по электронной почте. Важная информация: я решил пойти Вам на встречу и сдвинул deadline до 19 00 Воскресенья. Если пришлете дз раньше этого срока - я могу успеть указать на ошибки и дать возможность исправить. Ближе к выходным я пришлю Вам следующее дз на тему пределов. Удачи, А.Логунов