1. Пусть x_n и y_n — последовательности вещественных чисел. Пусть $X=\lim_{n\to +\infty}x_n,\,Y=\lim_{n\to +\infty}y_n,\,$ а функции $N_x\colon\mathbb{R}_+\to\mathbb{R},\,N_y\colon\mathbb{R}_+\to\mathbb{R}$ таковы, что для любого $\varepsilon>0$ при $n>N_x(\varepsilon)$ выполнено $|x_n-X|<\varepsilon,\,$ а при $n>N_y(\varepsilon)$ выполнено $|y_n-Y|<\varepsilon.$

Найдите предел $Z=\lim_{n\to +\infty}z_n$ и функцию $N_z\colon \mathbb{R}_+\to \mathbb{R}$ такую, что для любого $\varepsilon>0$ при $n>N_z(\varepsilon)$ выполнено $|z_n-Z|<\varepsilon$, если последовательность z_n задана соотношением:

- (a) (0.5) $z_n = x_n + y_n$;
- (6) (0.5) $z_n = x_n^2$;
- (B) (1) $z_n = x_n y_n$;
- (г) (1) $z_n = \frac{1}{y_n}$ (считать $Y \neq 0$);
- (д) (1) $z_n = \frac{x_n}{y_n}$ (считать $Y \neq 0$);
- (e) (1) $z_n = x_n^2 y_n + y_n^2 x_n$;
- (ж) (1) $z_n = \frac{x_n^2 y_n + y_n^2 x_n}{1 + (x_n + y_n)^2}$;
- 2. (2 балла) Докажите, что последовательность $x_n = \sqrt{n} \cdot \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot \ldots \cdot 2n}$ имеет конечный предел.
- 3. (3 балла) Докажите, что последовательность вещественных чисел, удовлетворяющая рекуррентному соотношению $x_{n+1} = x_n \sin x_n$, сходится.
- 4. (4 балла) Докажите, что если последовательность x_n имеет предел a, то последовательность $y_n=\frac{x_1+x_2+\ldots+x_n}{n}$ тоже имеет предел a.