Домашнее задание к 11.09.14, матан, 1 семестр
Материал из SEWiki
Отчётность: решаем, на занятии обсуждаем.
- Доказать, что на плоскости можно расположить не более чем счётное число непересекающихся фигурок. Фигурка — это точка, из которой торчат 3 непересекающиеся ломаные.
- . Может ли F быть несчётным? Два независимых пункта с условием:
- либо , либо
- . Доказать, что существует такое, что существует существует бесконечно много натуральных таких, что ( - целая часть или округление вниз).