Алгебраические структуры 2014 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
(Задачи)
(Задачи)
Строка 31: Строка 31:
 
# [http://mit.spbau.ru/sewiki/images/d/d3/%D0%94%D0%BE%D0%BC%D0%B0%D1%88%D0%BD%D0%B5%D0%B5_%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5_1_%D0%BF%D0%BE_%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%BC_%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B0%D0%BC.pdf ДЗ1: подгруппы, циклические группы, сопряженность] (задачи 1-5 к 24 сентября, задачу 10 к 1 октября, задачи 6-9 к 8 октября) + [http://mit.spbau.ru/sewiki/images/0/03/Q3._%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BF%D0%BE_%D1%86%D0%B8%D0%BA%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%BC_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D0%B0%D0%BC.pdf теория по циклическим группам]
 
# [http://mit.spbau.ru/sewiki/images/d/d3/%D0%94%D0%BE%D0%BC%D0%B0%D1%88%D0%BD%D0%B5%D0%B5_%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5_1_%D0%BF%D0%BE_%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%BC_%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B0%D0%BC.pdf ДЗ1: подгруппы, циклические группы, сопряженность] (задачи 1-5 к 24 сентября, задачу 10 к 1 октября, задачи 6-9 к 8 октября) + [http://mit.spbau.ru/sewiki/images/0/03/Q3._%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BF%D0%BE_%D1%86%D0%B8%D0%BA%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%BC_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D0%B0%D0%BC.pdf теория по циклическим группам]
 
# [http://mit.spbau.ru/sewiki/images/9/9b/%D0%94%D0%972._%D0%98%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D1%8B_%D0%BE_%D1%8F%D0%B4%D1%80%D0%B5_%D0%B8_%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%B5_%D0%B3%D0%BE%D0%BC%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D0%B8%D0%B7%D0%BC%D0%B0_%D0%B3%D1%80%D1%83%D0%BF%D0%BF.pdf ДЗ2: применение теоремы о гомоморфизме групп] (к 15 октября)
 
# [http://mit.spbau.ru/sewiki/images/9/9b/%D0%94%D0%972._%D0%98%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D1%8B_%D0%BE_%D1%8F%D0%B4%D1%80%D0%B5_%D0%B8_%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%B5_%D0%B3%D0%BE%D0%BC%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D0%B8%D0%B7%D0%BC%D0%B0_%D0%B3%D1%80%D1%83%D0%BF%D0%BF.pdf ДЗ2: применение теоремы о гомоморфизме групп] (к 15 октября)
# [http://mit.spbau.ru/sewiki/images/1/16/%D0%94%D0%973._%D0%A6%D0%B8%D0%BA%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D1%8B.pdf ДЗ3: циклические группы] (к 22 октября)
+
# [http://mit.spbau.ru/sewiki/images/1/16/%D0%94%D0%973._%D0%A6%D0%B8%D0%BA%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D1%8B.pdf ДЗ3: циклические группы] (к 22 октября). Две задачи со штрихом предназначаются только следующим студентам: М.Андрианов, К.Куприй, Д.Павлюченко, С.Прошев
  
 
== Список литературы ==
 
== Список литературы ==

Версия 12:26, 21 октября 2014

Преподаватель (лекции и практика): Горячко Евгений Евгеньевич

Программа курса

  1. Структуры, гомоморфизмы структур. Моноиды. Группы. Числовые группы, симметрические группы и группы автоморфизмов графов.
  2. Подгруппы, классы смежности. Лемма о разбиениях на классы смежности, теорема Лагранжа. Порядок элемента. Лемма о порядке элемента.
  3. Циклические группы. Теорема об описании циклических групп. Дискретный логарифм. Две теоремы о подгруппах циклической группы.
  4. Нормальные подгруппы. Сопряжение элементов. Разбиение на классы сопряженности. Факторгруппы. Теорема о гомоморфизме для групп.
  5. Прямое произведение групп. Теорема о прямом произведении. Теорема о разложении конечной циклической группы в прямое произведение.
  6. Кольца. Числовые кольца, кольца многочленов. Области целостности. Поля. Подкольца. Идеалы, факторкольца. Прямое произведение колец.
  7. Описание и в кольце в терминах идеалов. Соотношение и коэффициенты Безу, алгоритм Евклида. Китайская теорема об остатках.
  8. Функция Эйлера. Лемма об обратимых остатках. Теорема Эйлера. Теорема о функции Эйлера. Теорема о группах обратимых остатков.
  9. Критерий существования дискретного логарифма по модулю . Тесты Ферма, Эйлера и Миллера–Рабина. Числа Кармайкла. Алгоритм RSA.
  10. Симметрические группы. Транспозиции. Инверсии. Теорема о разложении перестановки в произведение фундаментальных транспозиций.
  11. Знак перестановки и знакопеременные группы. Цикловый тип. Теорема об описании классов сопряженности в симметрических группах.

Результаты

Результаты

Основные материалы

Домашние задания

Требования

Решения задач нужно сдавать преподавателю в виде записей или распечаток. Посылать решения по электронной почте можно, если и только если имеется уважительная причина, по которой их нельзя отдать на бумаге. Решения задачи не принимаются после того, как эта задача разобрана на практике. За каждую задачу можно получить баллы в количестве от нуля до полной стоимости задачи (она указана около номера задачи). На одной практике планируется разбирать около пяти задач в порядке возрастания номера задачи.

Задачи

  1. Моноиды и группы (к 10 сентября) [без баллов]
  2. ДЗ1: подгруппы, циклические группы, сопряженность (задачи 1-5 к 24 сентября, задачу 10 к 1 октября, задачи 6-9 к 8 октября) + теория по циклическим группам
  3. ДЗ2: применение теоремы о гомоморфизме групп (к 15 октября)
  4. ДЗ3: циклические группы (к 22 октября). Две задачи со штрихом предназначаются только следующим студентам: М.Андрианов, К.Куприй, Д.Павлюченко, С.Прошев

Список литературы

Основная литература

  • Винберг Э.Б. Курс Алгебры
  • Кострикин А.И. Введение в агебру. Том 1.
  • Ленг С. Алгебра

Первые две книги с разжеванным материалом, третья — с сжатым, но многочисленным.

Дополнительная литература

  • Кострикин А.И. Введение в агебру. Том 3.
  • Верещагин Н.К., Шень А.Х. Языки и исчисления