Матан, 1 семестр, 2014/15 — различия между версиями
(→Домашнее задание к 02.10.14) |
|||
Строка 56: | Строка 56: | ||
# (3) Последовательность <math>x_n</math> задана следующим образом: <math>x_0=1</math>, <math>x_1=2</math> и <math>x_{n+1}=\sqrt[3]{x_n^2 x_{n-1}}</math> при <math>n>1</math>. Докажите, что последовательность <math>x_n</math> сходится и найдите ее предел. | # (3) Последовательность <math>x_n</math> задана следующим образом: <math>x_0=1</math>, <math>x_1=2</math> и <math>x_{n+1}=\sqrt[3]{x_n^2 x_{n-1}}</math> при <math>n>1</math>. Докажите, что последовательность <math>x_n</math> сходится и найдите ее предел. | ||
# (3) Последовательность положительных чисел <math>a_n</math> такова, что для любых <math>m,n</math> выполнено неравенство <math>a_{m+n}\leq a_n + a_m</math>. Докажите, что последовательность <math>\frac{a_n}{n}</math> имеет предел. | # (3) Последовательность положительных чисел <math>a_n</math> такова, что для любых <math>m,n</math> выполнено неравенство <math>a_{m+n}\leq a_n + a_m</math>. Докажите, что последовательность <math>\frac{a_n}{n}</math> имеет предел. | ||
+ | |||
+ | == Домашнее задание к 09.10.14 == | ||
+ | |||
+ | 1. Пусть <math>x_n </math> и <math>y_n </math> --- последовательности вещественных чисел. Пусть <math>X=\lim\limits_{n\to +\infty}x_n </math>,<math>Y=\lim\limits_{n\to +\infty}y_n </math>,а функции <math>N_x \colon \mathbb{R}_+ \to \mathbb{R}, N_y \colon \mathbb{R}_+ \to \mathbb{R} </math> таковы, что для любого <math>\varepsilon>0 </math> при <math>n>N_x(\varepsilon) </math> выполнено <math>|x_n-X|<\varepsilon </math>,а при <math>n>N_y(\varepsilon) </math> выполнено <math>|y_n-Y|<\varepsilon </math>. Найдите предел <math>Z=\lim\limits_{n\to +\infty}z_n </math> и функцию <math>N_z \colon \mathbb{R}_+ \to \mathbb{R} </math> такую, что для любого <math>\varepsilon>0 </math> при <math>n>N_z(\varepsilon) </math> выполнено <math>|z_n-Z|<\varepsilon </math>,если последовательность <math>z_n </math> задана соотношением | ||
+ | |||
+ | a) (0.5) <math>z_n = x_n + y_n </math>; б) (0.5) <math>z_n = x_n^2 </math>; в) (1) <math>z_n = x_n y_n </math>; | ||
+ | |||
+ | г) (1) <math>z_n = \frac{1}{y_n} </math> (считать <math>Y\ne 0 </math>); д) (1) <math>z_n =\frac{x_n}{y_n} </math> (считать <math>Y\ne 0 </math>); | ||
+ | |||
+ | е) (1) <math>z_n = x_n^2y_n + y_n^2x_n </math>; ё) (1) <math>z_n = \frac{x_n^2y_n + y_n^2x_n}{1+(x_n+y_n)^2} </math>; | ||
+ | |||
+ | |||
+ | 2. (2 балла) Докажите, что последовательность <math>x_n=\sqrt{n} \cdot \frac{1\cdot 3\cdot \dots \cdot (2n-1)}{2\cdot 4\cdot \dots \cdot 2n} </math> имеет конечный предел. | ||
+ | |||
+ | 3. (3 балла) Докажите, что последовательность вещественных чисел, удовлетворяющая рекуррентному соотношению <math>x_{n+1}=x_n \sin x_n </math>,сходится. | ||
+ | |||
+ | 4. (4 балла) Докажите, что если последовательность <math>x_n </math> имеет предел <math>a </math>, то последовательность <math>y_n=\frac{x_1+x_2+\dots + x_n}{n} </math> тоже имеет предел <math>a </math>. | ||
= Группа Александра Логунова = | = Группа Александра Логунова = |
Версия 15:04, 3 октября 2014
Группа Фёдора Петрова
Домашнее задание на семестр
Отчётность: без понятия
- Существует ли биективный многочлен :
Домашнее задание к 11.09.14
Отчётность: решаем, на занятии обсуждаем.
- Доказать, что на плоскости можно расположить не более чем счётное число непересекающихся фигурок. Фигурка — это точка, из которой торчат 3 непересекающиеся ломаные.
- . Может ли F быть несчётным? Два независимых пункта с условием:
- либо , либо
- . Доказать, что существует такое, что существует существует бесконечно много натуральных таких, что ( - целая часть или округление вниз).
Домашнее задание к 18.09.14
Отчётность: в рамках усиления контроля предлагается его писать и сдавать в начале занятия.
Домашнее задание к 25.09.14
-
- (1) Докажите, что ограниченная последовательность вещественных чисел имеет предел тогда и только тогда, когда она имеет единственный частичный предел (предел подпоследовательности).
- (1) Докажите, что множество частичных пределов любой последовательности вещественных чисел замкнуто.
-
- (1) Докажите, что если и пространство сепарабельно, то пространство тоже сепарабельно.
- (1) Пусть --- последовательность подмножеств , такая что сепарабельны, а плотно в . Докажите, что сепарабельно.
- (2) Докажите, что если метрическое пространство сепарабельно, то любое его открытое подмножество представляется в виде счетного объединения шаров.
- (1) Пусть --- простое число. Для определим , где число представлено в виде , где и не делятся на . Положим . Докажите, что функция является метрикой на множестве .
- (4) Докажите, что если --- полное метрическое сепарабельное пространство без изолированных точек (изолированной называется точка, совпадающая с некоторой своей окрестностью), то найдется инъекция из множества бесконечных (0,1)-последовательностей в (тем самым, не счетно).
- (4) Полное метрическое пространство представлено в виде счетного объединения замкнутых множеств. Докажите, что хотя бы одно из них имеет непустую внутренность.
- (4) Докажите, что если и --- две метрики на множестве , такие что метрические пространства и сепарабельны, то метрическое пространство тоже сепарабельно.
- Найдите множество частичных пределов последовательности
- (2) ( --- дробная часть числа , то есть и --- целое число.)
- (3) .
Домашнее задание к 02.10.14
- Найдите предел и для последовательности
- (1)
- (1)
- (1)
- (1)
-
- (1) Докажите, что последовательность не имеет предела;
- (2) Докажите, что последовательность не имеет предела;
- (3) При каких последовательность имеет предел?
- (3) Последовательность чисел такова, что при . Докажите, что при .
- (3) Последовательность задана следующим образом: , и при . Докажите, что последовательность сходится и найдите ее предел.
- (3) Последовательность положительных чисел такова, что для любых выполнено неравенство . Докажите, что последовательность имеет предел.
Домашнее задание к 09.10.14
1. Пусть и --- последовательности вещественных чисел. Пусть ,,а функции таковы, что для любого при выполнено ,а при выполнено . Найдите предел и функцию такую, что для любого при выполнено ,если последовательность задана соотношением
a) (0.5) ; б) (0.5) ; в) (1) ;
г) (1) (считать ); д) (1) (считать );
е) (1) ; ё) (1) ;
2. (2 балла) Докажите, что последовательность имеет конечный предел.
3. (3 балла) Докажите, что последовательность вещественных чисел, удовлетворяющая рекуррентному соотношению ,сходится.
4. (4 балла) Докажите, что если последовательность имеет предел , то последовательность тоже имеет предел .
Группа Александра Логунова
Домашнее задание к 02.10.14
Здравствуйте, дорогие студенты! ... По просьбам трудящихся дз стало меньше, чем в прошлый раз, но это лишь временная мера в связи с наличием старого дз, которое еще не все сдали. Напоминаю, что теперь deadline для старого Дз - до 19 00 воскресенья, а новое дз нужно сдать в ПИСЬМЕННОМ виде на следующей паре. В приложении также лежит разбор задачи про sin(n^2), которую разбирали в классе. Удачи, А. Логунов
Домашнее задание к 25.09.14
Каждая задача стоит от 1-го до 4-ех баллов. Рекомендуется решить все задачи, которые весят 1 - 2 балла. Остальные задачи считайте бонусными. В приложении лежит домашнее задание, в котором исправили нумерацию, и добавили условие про замкнутость в 7-ой задаче. Добавился пункт в 7-ой задаче, когда шары открытые, он оценивается в 1 балл.
Насчет субботы... На этой неделе ничего не будет, а на следующей начнется. Вопросы можно также задавать по электронной почте. Важная информация: я решил пойти Вам на встречу и сдвинул deadline до 19 00 Воскресенья. Если пришлете дз раньше этого срока - я могу успеть указать на ошибки и дать возможность исправить. Ближе к выходным я пришлю Вам следующее дз на тему пределов. Удачи, А.Логунов