Матан, 1 семестр, 2014/15
Материал из SEWiki
Содержание
Группа Фёдора Петрова
Домашнее задание на семестр
Отчётность: без понятия
- Существует ли биективный многочлен :
Домашнее задание к 11.09.14
Отчётность: решаем, на занятии обсуждаем.
- Доказать, что на плоскости можно расположить не более чем счётное число непересекающихся фигурок. Фигурка — это точка, из которой торчат 3 непересекающиеся ломаные.
- . Может ли F быть несчётным? Два независимых пункта с условием:
- либо , либо
- . Доказать, что существует такое, что существует существует бесконечно много натуральных таких, что ( - целая часть или округление вниз).
Домашнее задание к 18.09.14
Отчётность: в рамках усиления контроля предлагается его писать и сдавать в начале занятия.
Домашнее задание к 25.09.14
-
- (1) Докажите, что ограниченная последовательность вещественных чисел имеет предел тогда и только тогда, когда она имеет единственный частичный предел (предел подпоследовательности).
- (1) Докажите, что множество частичных пределов любой последовательности вещественных чисел замкнуто.
-
- (1) Докажите, что если и пространство сепарабельно, то пространство тоже сепарабельно.
- (1) Пусть --- последовательность подмножеств , такая что сепарабельны, а плотно в . Докажите, что сепарабельно.
- (2) Докажите, что если метрическое пространство сепарабельно, то любое его открытое подмножество представляется в виде счетного объединения шаров.
- (1) Пусть --- простое число. Для определим , где число представлено в виде , где и не делятся на . Положим . Докажите, что функция является метрикой на множестве .
- (4) Докажите, что если --- полное метрическое сепарабельное пространство без изолированных точек (изолированной называется точка, совпадающая с некоторой своей окрестностью), то найдется инъекция из множества бесконечных (0,1)-последовательностей в (тем самым, не счетно).
- (4) Полное метрическое пространство представлено в виде счетного объединения замкнутых множеств. Докажите, что хотя бы одно из них имеет непустую внутренность.
- (4) Докажите, что если и --- две метрики на множестве , такие что метрические пространства и сепарабельны, то метрическое пространство тоже сепарабельно.
- Найдите множество частичных пределов последовательности
- (2) ( --- дробная часть числа , то есть и --- целое число.)
- (3) .
Группа Александра Логунова
Домашнее задание к 25.09.14
Задачи нужно сдать на следующем занятии. Каждая задача стоит от 1-го до 4-ех баллов. Рекомендуется решить все задачи, которые весят 1 - 2 балла. Остальные задачи считайте бонусными.