Алгебра phys 1 февраль–март

Материал из SEWiki
Перейти к: навигация, поиск

2  Линейная алгебра

2.1  Векторные пространства

2.1.1  Определения и конструкции, связанные с векторными пространствами
  • Векторное пространство над полем — абелева группа по сложению с действием поля эндоморфизмами по сложению.
  • Гомоморфизмы векторных пространств (линейные операторы): — векторное пространство. Кольцо , группа .
  • Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
  • Подпространство: . Подпростр.-во, порожд. мн.-вом : .
  • Утверждение: . Пример: . Линейные комбинации.
  • Ядро и образ линейн. оператора : и . Утверждение: . Лемма о слоях гомоморфизма.

    Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр.-ва над , , и ; тогда .

  • Факторпространство: с фактороперациями (). Корректность опр.-я факторопер.-й. Теорема о гомоморфизме. Пример: .

    Теорема о гомоморфизме. Пусть — поле, — вект. пр.-ва над и ; тогда .

  • Прямая сумма : с покомпонентными операциями. Обобщение ( — мн.-во): .
2.1.2  Базисы, координаты, размерность
  • Теорема о размерностях ядра и образа и принцип Дирихле для линейных операторов. Пусть — поле и — вект. пр.-ва над ; тогда
    (1) если , то для любых выполнено ;
    (2) если , то .