Алгебраические структуры 5 2015

Материал из SEWiki
Перейти к: навигация, поиск
В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)
или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-
менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.
Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-
ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих
пространств, хотя принципиальная возможность применения его в более общих случаях остается.
Статья «Тензор» в русскоязычной Википедии
In the 20th century, the subject came to be known as tensor analysis, and achieved broader acceptance with the introduction of Einstein's the-
ory of general relativity, around 1915. General relativity is formulated completely in the language of tensors. Einstein had learned about them,
with great difficulty, from the geometer Marcel Grossmann. Tullio Levi-Civita then initiated a correspondence with Einstein to correct mistakes
Einstein had made in his use of tensor analysis. The correspondence lasted 1915–1917, and was characterized by mutual respect: "I admire
the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while the like of
us have to make our way laboriously on foot" (from Einstein's letter to Levi-Civita).
Статья «Tensor» в англоязычной Википедии

3.4  Тензорные произведения векторных пространств

3.4.1  Определения, конструкции и основные теоремы, связанные с тензорами
  • Тензорное произв.-е пространств: , где и — подпространство полилинеаризации.
  • Элементарные тензоры: . Утверждение: .
  • Ранг тензора : равен минимальному среди всех таких чисел , что , где — элементарные тензоры.
  • Теорема об универсальности тензорного произведения. Пусть — поле, и — векторные пространства над полем ;
    тогда отображение полилинейно, и для любых существует единственный
    такой гомоморфизм , что для любых выполнено
    (и, значит, отображение — изоморфизм векторных пространств).
  • Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и
    базисы пространств соответственно; тогда — базис пространства
    (и, значит, если , то ).
  • Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
    и , а также .
  • Тензорное произв.-е тензоров: . Тензорное произв.-е гомоморфизмов (): .
  • Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
    (1) отображение — инъективный гомоморфизм векторных пространств, а также,
    если , то данное отображение — изоморфизм векторных пространств;
    (2) отображение — инъективный гомоморфизм векторных пространств, а также, если , то
    данное отображение — изоморфизм векторных пространств;
    (3) отображения и — инъективные гомоморфизмы векторных
    пространств, а также, если , то данные отображения — изоморфизмы векторных пространств.
3.4.2  Тензорные алгебры и тензоры в координатах
  • Пространство тензоров типа : . Примеры: , , , , .
  • Примеры: — пространство структур алгебры на , — пространство структур коалгебры на .
  • Утверждение: . Алгебры контравариантных и ковариантных тензоров над : и .
  • Тензор в координатах: . Примеры: , , .
  • Примеры: — метрический тензор, — форма объема.
  • Преобразование координат: (здесь и ).
3.4.3  Операции над тензорами
  • Перестановки компонент тензоров в общем случае. Представление группы в пространстве : .
  • Тензорное произведение тензоров в координатах: . Кронекеровское произведение матриц.
  • Свертка по паре : .
  • Свертка по паре в координатах: . Теорема о свертках тензоров малой валентности.

    Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых , и выполнено , , и ;
    (2) для любых и выполнено и .

  • Теорема об обратном метрическом тензоре. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) прообраз гомоморфизма относительно изоморфизма равен тензору ;
    (2) если форма невырождена, то, обозначая через прообраз гомоморфизма относительно изоморфизма
    (тензор — тензор типа , обратный к тензору ), для любых имеем следующий факт: .
  • Опускание индекса: .
  • Подъем индекса: .
  • Опускание и подъем в координатах: и .

3.5  Симметрические и внешние степени векторных пространств

3.5.1  Симметричные тензоры и симметрическая алгебра
3.5.2  Антисимметричные тензоры и внешняя алгебра




Алгебраические структуры

Лектор: Евгений Евгеньевич Горячко.

Преподаватель практики у подгруппы №1: Евгений Евгеньевич Горячко.

Список подгруппы №1 на практике: Иван Абрамов, Евгений Акимов, Роман Васильев, Марк Геллер, Сергей Голованов,
Андрей Крутиков, Рауф Курбанов, Антон Мордберг, Кирилл Пилюгин, Дмитрий Саввинов, Андрей Серебро, Алексей Степанов,
Ильнур Шугаепов, Наталья Ялышева, а также Иван Дмитриевский и Ирина Щукина.

Преподаватель практики у подгруппы №2: Софья Сергеевна Афанасьева.

Список подгруппы №2 на практике: Дмитрий Байдин, Виталий Бибаев, Фёдор Бочаров, Артём Бутомов, Святослав Власов,
Шамиль Гарифуллин, Егор Горбунов, Эдгар Жаворонков, Никита Иванов, Сергей Козлов, Татьяна Кузина, Михаил Митрофанов,
Семён Поляков, Владислав Саенко, Леонид Сташевский, Константин Чаркин.

Файл с домашним заданием на 11-е ноября.

Таблица успеваемости студентов.

Все основные материалы курса имеются на следующих страницах: http://mit.spbau.ru/courses/algstructures и
http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).

2  Линейная алгебра

2.1  Матрицы, базисы, координаты

2.1.1  Пространства матриц, столбцов, строк
  • Пространство матриц . Пространство столбцов: . Пространство строк: .
  • Матричные единицы: . Стандартный базис пространства : .
  • Стандартный базис пространства : . Стандартный базис пространства : .
  • Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
  • Строки матрицы: . Столбцы матрицы: . Утверждение: и .
  • След матрицы: . Утверждение: пусть и ; тогда .
  • Транспонирование матрицы: . Утверждение: пусть и ; тогда .
2.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств .
  • Матрица гомоморфизма: . Утверждение: и . Утверждение: .
  • Изоморфизм векторных пространств . Изоморфизм колец и векторных пространств .
2.1.3  Преобразования координат при замене базиса
  • Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
  • Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
  • Преобразование координат гомоморфизма: . Покомпонентная запись (если — эндоморфизм): .
2.1.4  Элементарные матрицы и приведение к ступенчатому виду
  • Элементарные трансвекции и псевдоотражения .
  • Элементарные преобразования над строками первого типа и второго типа .
  • Элементарные преобразования над столбцами первого типа и второго типа .
  • Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Нахождение базиса подпространства, порожденного конечным множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.

2.2  Линейные операторы (часть 1)

2.2.1  Ядро и образ линейного оператора
  • Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
  • Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.

    Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .

    Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .

  • Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
    и ; тогда выполнено .
  • Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
    тогда выполнено .
2.2.2  Ранг линейного оператора
  • Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Утверждение: . Утверждение: и .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) для любых матриц и выполнено ;
    (2) существуют такие матрицы и , что ;
    (3) и (то есть ранг по столбцам равен рангу по строкам).
2.2.3  Системы линейных уравнений
  • Матричная запись систем. Однородные системы. Утверждение: пусть ; тогда .
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
  • Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .

2.3  Конструкции над векторными пространствами

2.3.1  Факторпространства и прямая сумма векторных пространств
  • Факторпространство: . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
  • Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
  • Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.

    Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ;
    обозначим через отображение ; тогда
    (1) , и ;
    (2) ;
    (3) если , то ;
    (4) если , то (это формула Грассмана).

  • Подпространство, инвариантное относительно эндоморфизма: . Матрица эндоморфизма, имеющего инвариантное подпространство.
  • Матрица эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
2.3.2  Двойственное пространство
  • Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
  • Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
  • Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .
  • Сводная таблица о координатах. (В таблице — поле, — векторное пространство над полем , и .)

Инвариантный объектКоординаты
относительно базиса
Преобразование координат
при замене базиса
Пример использования
в геометрии и физике
вектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
скорость в точке
гладкого пути
на многообразии
ковектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
дифференциал в точке
гладкой функции (скалярного поля)
на многообразии
эндоморфизм
элемент пространства
(тензор типа над )

(это изоморфизм колец
и векторных пространств)
матричная запись:
покомпонентная запись:
дифференциал в неподвижной точке
гладкого отображения,
действующего из многообразия в себя

2.4  Полилинейные отображения, формы объема, определитель

2.4.1  Отступление о симметрических группах
  • Симметрическая группа: . Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
  • Утверждение: . Утверждение: .
  • Теорема о классах сопряженности в симметрических группах. Пусть и ; тогда перестановки и сопряжены, если и только
    если (неупорядоченные) наборы длин циклов перестановок и равны.
  • Транспозиции и фундаментальные транспозиции . Число циклов .
  • Лемма об умножении на транспозицию. Пусть , , и ; тогда
    (1) если числа и принадлежат одному циклу в перестановке , то ;
    (2) если числа и принадлежат разным циклам в перестановке , то .
  • Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
    (1) существуют такие транспозиции , что ;
    (2) для любых из существования таких транспозиций , что , следует, что и .
  • Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
2.4.2  Полилинейные отображения и формы объема
  • Пространства полилинейных отображений , и полилинейных форм , .
  • Пространства билинейных отображений , и билинейных форм , . Примеры полилинейных форм.
  • Пространство симметричных полилинейных форм . Пространство антисимметричных полилинейных форм .
  • Лемма об антисимметричных формах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие условия эквивалентны (если , то исключаются импликации (2)(1) и (3)(1)):
    (1) ;
    (2) для любых и таких , что — транспозиция, выполнено ;
    (3) для любых и выполнено .
  • Пространство форм объема (). Форма объема, связанная с базисом: .
  • Теорема о формах объема. Пусть — поле, — векторное пространство над , ; обозначим через число ; тогда
    (1) для любых и выполнено ;
    (2) для любых множество — базис пространства ;
    (3) для любых и выполнено .
2.4.3  Определитель линейного оператора
  • Определитель линейного оператора: , где . Корректность определения.
  • Теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) (напоминание: );
    (2) для любых выполнено
    (и, значит, отображение определено корректно и является гомоморфизмом групп).
  • Определитель матрицы: . Утверждение: пусть ; тогда .
  • Лемма об определителе оператора и определителе матрицы. Пусть — поле, — векторное пространство над полем , ,
    и ; обозначим через число ; тогда .
  • Утверждение: и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков.
  • Специальные линейные группы: и .
2.4.4  Миноры матрицы и присоединенная матрица
  • Миноры. Дополнительные миноры. Присоединенная матрица: дополнительный минор матрицы в позиции .
  • Теорема о присоединенной матрице. Пусть — поле, и ; тогда
    (1) и (в частности,
    при имеем и при имеем ;
    это формулы разложения определителя матрицы по -й строке матрицы и по -му столбцу матрицы соответственно);
    (2) и, если , то .
  • Правило Крамера. Пусть — поле, , , и ; тогда .
  • Теорема о базисном миноре. Пусть — поле, и ; тогда равен максимальному среди всех таких чисел
    , что в матрице существует такая подматрица размера , что (то есть ).