Test page

Материал из SEWiki
Перейти к: навигация, поиск

Это песочница. Тут можно тестировать разметку.

Тестирование (h2)

Вот тут будет ненумерованный список:

  • Первый элемент
  • Второй элемент

А вот тут - нумерованный:

  1. Первый элемент
  2. Второй элемент

Заголовок (h3)

И еще один подзаголовок (h4)

И еще один подподзаголовок (h5)
Подподподзаголовок (h6)
= Подподподподзаголовок уже не работает =
А вот это - заголовок через HTML-тег

Математика (формулы скомпилированы в 2016-м и 2017-м годах)

3.3  Поле комплексных чисел
  • Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
  • Вещественная и мнимая части: и . Сопряжение: . Модуль: .
  • Теорема о свойствах комплексных чисел.
    (1) Для любых выполнено и, если , то (и, значит, — поле).
    (2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Группа : . Утверждение: . Экспонента от компл. числа : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Для любых выполнено , а также и .
    (2) Для любых выполнено (и, значит, и ).

Математика (формулы скомпилированы 16.01.2018)

3.3  Поле комплексных чисел
  • Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
  • Вещественная и мнимая части: и . Сопряжение: . Модуль: .
  • Теорема о свойствах комплексных чисел.
    (1) Для любых выполнено и, если , то (и, значит, — поле).
    (2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Группа : . Утверждение: . Экспонента от компл. числа : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Для любых выполнено , а также и .
    (2) Для любых выполнено (и, значит, и ).