Formulas were compiled before January 16th, 2018. Formulas differ from the text, this is nice.
- Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
- Вещественная и мнимая части: и . Сопряжение: . Модуль: .
- Теорема о свойствах комплексных чисел.
(1) Для любых выполнено и, если , то (и, значит, — поле).
(2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
- Группа : . Утверждение: . Экспонента от компл. числа : . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
(1) Для любых выполнено , а также и .
(2) Для любых выполнено (и, значит, и ).
- Тригонометрическая запись: . Группа корней -й степ. из : .
- Первообразные корни -й степени из . Корни -й степени из : .
- «Основная теорема алгебры»: — алгебраически замкнутое поле, то есть (без доказ.-ва; см. § 3 главы 6 в [3]).
- Теорема о неприводимых многочленах над полями R и C.
(1) Пусть , и ; тогда .
(2) и .
Formulas were compiled after January 16th, 2018. Formulas do not differ from the text, this is not nice.
- Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
- Вещественная и мнимая части: и . Сопряжение: . Модуль: .
- Теорема о свойствах комплексных чисел.
(1) Для любых выполнено и, если , то (и, значит, — поле).
(2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
- Группа : . Утверждение: . Экспонента от компл. числа : . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
(1) Для любых выполнено , а также и .
(2) Для любых выполнено (и, значит, и ).
- Тригонометрическая запись: . Группа корней -й степ. из : .
- Первообразные корни -й степени из . Корни -й степени из : .
- «Основная теорема алгебры»: — алгебраически замкнутое поле, то есть (без доказ.-ва; см. § 3 главы 6 в [3]).
- Теорема о неприводимых многочленах над полями R и C.
(1) Пусть , и ; тогда .
(2) и .
There are formulas that were compiled before January 16th, 2018, and formulas that were compiled after January 16th, 2018. Rasterization is different.
- . . . .