Алгебра phys 1 февраль–март

Материал из SEWiki
Перейти к: навигация, поиск

2  Линейная алгебра

Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-
научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-
щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического
анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-
нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство
приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.
Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности
малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы
является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной
алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной
двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-
лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.
А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия
Одно из отличий математиков от физиков — стремление математиков назвать вещи своими именами. Примеров тому — масса,
особенно в двадцатом веке, когда произошло «размежевание» математики и физики.
Классический пример — линейная алгебра. То, что системы линейных уравнений имеют «какую-то структуру», понимали все, и
до Гаусса, и после. Соответственно, манипуляции с этими уравнениями, позволяющие решить систему или, скажем, привести
квадратичную форму к сумме квадратов, знали и физики, и инженеры, и математики. Но математики полезли на стенку и нашли
правильный язык: векторные пространства, линейные операторы, двойственные пространства и т.д. Это могло бы показаться
игрой со словами, но оказалось, что технически гораздо более сложные вещи (дифференциальные и интегральные уравнения)
также описываются на языке линейной алгебры, только бесконечномерной.
То же верно и в отношении других физических конструктов. Физики обнаружили экспериментальным путем (выписывая лист за
листом громоздкие формулы), что некоторые величины, задаваемые индексированными массивами данных, по-разному преоб-
разуются при замене координат, и назвали соответствующие величины тензорами. Это — чистая «феноменология», позволяю-
щая быстро проконтролировать вычисления на предмет ошибок (ну, или механизировать эти вычисления). Математики долго
пыхтели и сформулировали понятия симметрических и антисимметрических произведений векторных пространств и их двойст-
венных пространств и разобрались, откуда они возникают. В общем, исторический опыт убедительно подтверждает: если чело-
век узнал, что всю жизнь говорил прозой, то в дальнейшем ему легче жить с этим знанием. ;-)
По мотивам комментария в Живом Журнале (avva.livejournal.com/2932837.html)

2.1  Векторные пространства

2.1.1  Определения и конструкции, связанные с векторными пространствами
  • Векторное пространство над полем — абелева группа с «правильным» умножением на скаляры из . Свойства операций в векторном пространстве.
  • Примеры: простр.-ва столбцов и строк, простр.-ва матриц, простр.-ва функций, простр.-ва финитных функций, простр.-ва многочленов, простр.-ва рядов.
  • Гомоморфизмы вект. пространств (линейные операторы): — вект. пространство. Кольцо , группа .
  • Подпростр.-во: . Подпр.-во, порожд. мн.-вом : — наименьш. относ.-но подпр.-во, содержащ. .
  • Утверждение: . Линейная комбинация элементов множества : .
  • Ядро и образ линейного оператора : и . Утверждение: и . Теорема о слоях и ядре линейного оператора.

    Теорема о слоях и ядре линейного оператора. Пусть — поле, — векторные пространства над полем и ; тогда
    (1) для любых и выполнено ;
    (2) — инъекция, если и только если .

  • Матричная запись системы из линейных уравн.-й от переменных: (, , ). Однородная система: .
  • Утверждение: пусть ; тогда . Линейные дифференциальные уравн.-я и системы уравн.-й.
2.1.2  Независимые множества, порождающие множества, базисы
  • — независимое мн.-во: . — порождающее мн.-во: . Базис — независ. порожд. мн.-во.
  • Стандартные базисы пространств и : и . Стандартный базис простр.-ва : .
  • Теорема о свойствах базиса. Пусть — поле, — векторное пространство над полем и ; тогда следующие утверждения эквивалентны:
    (у1) — базис пространства ;
    (у2) отображение — изоморфизм векторных пространств;
    (у3) для любого вектора существует единственная такая финитная функция , что ;
    (у4) — независимое подмножество в и для любого вектора множество не является независимым подмножеством в
    (то есть — максимальное независимое множество);
    (у5) — порождающее подмножество в и для любого вектора множество не является порождающим подмножеством в
    (то есть — минимальное порождающее множество).
  • Теорема об универсальности базиса. Пусть — поле, — вект. пр.-ва над и — базис пространства ; тогда для любых
    существует единственный такой , что (и, значит, — изоморфизм вект. пространств).
  • Теорема о базисах и линейных операторах. Пусть — поле, — вект. пр.-ва над , — базис пространства и ; тогда
    (1) — инъекция, если и только если — инъекция и — независимое множество;
    (2) — сюръекция, если и только если — порождающее множество;
    (3) — изоморфизм, если и только если — инъекция и — базис.
  • Теорема о порядках независимых и порождающих множеств. Пусть — поле, — вект. простр.-во над полем , и ; тогда
    (1) если — независимое множество и , то ;
    (2) если и — базисы пространства , то .
  • Теорема о существовании базиса. Пусть — поле, — векторное пространство над полем , — независимое подмножество в и
    — порождающее подмножество в , а также в существует конечное порождающее подмножество; тогда
    (1) существует такой базис пространства , что (и, значит, дополняя до базиса множество , получаем, что в существует базис);
    (2) существует такой базис пространства , что (и, значит, выделяя базис из множества , получаем, что в существует базис).
2.1.3  Размерность, координаты, замена координат
  • Размерность пр.-ва — порядок (мощность) базиса пр.-ва . Примеры: , , .
  • Теорема о свойствах размерности. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любого независимого подмножества в выполнено и, если , то — базис;
    (2) для любого порождающего подмножества в выполнено и, если , то — базис;
    (3) для любого подпространства в выполнено и, если , то .
  • Теорема о размерности и линейных операторах. Пусть — поле, — векторные пространства над полем и ; тогда
    (1) , если и только если ;
    (2) , если и только если ;
    (3) , если и только если ;
    (4) если , то (это принцип Дирихле для линейных операторов).
  • Множество упорядоченных базисов: . Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств .
  • Матрица линейн. оператора : . Теорема о матрице линейного оператора. Изоморфизм колец и вект. пр.-в .

    Теорема о матрице линейного оператора. Пусть — поле и — векторные пространства над полем ; тогда
    (1) если , , и , то , а также отображение
    — изоморфизм векторных пространств (и, значит, );
    (2) если , , и , то .

  • Матрица замены координат (): . Пример: (, ). Утверждение: , .
  • Преобразование столбца координат вектора: ; то же в покомпонентной записи: . Преобразование базиса: .
  • Преобразование матрицы линейного оператора: ; то же в покомпонентной записи (если ): .
2.1.4  Факторпространства, прямая сумма векторных пространств, двойственное пространство
  • Факторпростр.-во: с фактороперациями (). Теорема о гомоморфизме. Коразмерность: . Аффинные подпростр.-ва.

    Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .

  • Теорема о факторпространстве. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) если — базис пространства , — базис пространства и , то все классы смежности , где , попарно различны и
    вместе образуют базис пространства ;
    (1') если , то (и, значит, );
    (2) если , — вект. пр.-во над и , то (это теорема о размерностях ядра и образа).
  • Прямая сумма : с покомпонентными операциями. Обобщение ( — мн.-во): .
  • Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем , и ; обозначим через
    линейный оператор ; тогда
    (1) если и — базисы пространств соответственно, то множества попарно
    не пересекаются и — базис пространства ;
    (1') если , то ;
    (2) следующие утверждения эквивалентны: (у1) , (у2) и
    (у3) ;
    (3) если , то в пункте (2) условие "" можно заменить на условие "";
    (4) если и , то (это формула Грассмана).
  • Внутренняя прямая сумма: . Прямая сумма матриц. Лемма об инвариантном подпространстве.

    Лемма об инвариантном подпространстве. Пусть — поле, — векторное пространство над полем , , ,
    и (то есть -инвариантное подпространство), а также и ; тогда
    (1) существуют такие , , и , что ;
    (2) если , и , то существуют такие , и , что .

  • Двойственное пространство: . Двойственный базис: . Столбец . Строка координат ковектора.
  • Утверждение: . Изоморфизм . Преобразования при замене базиса: и , а также .
  • Двойственный оператор (): . Утверждение: пусть ; тогда — изоморфизм.

ТАБЛИЦА О КООРДИНАТАХ
(в таблице — поле, — векторное пространство над полем , и )
Инвариантный объектКоординаты
относительно базиса
Преобразование координат
при замене базиса
Пример использования
в геометрии и физике
вектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
скорость в точке
гладкого пути
на многообразии
ковектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
дифференциал в точке
гладкой функции (скалярного поля)
на многообразии
эндоморфизм
элемент пространства
(тензор типа над )

(это изоморфизм колец
и векторных пространств)
матричная запись:
покомпонентная запись:
дифференциал в неподвижной точке
гладкого отображения,
действующего из многообразия в себя

2.2  Линейные операторы (часть 1)

2.2.1  Элементарные преобразования, метод Гаусса, ранг линейного оператора
  • Элементарные матрицы: трансвекции , псевдоотражения .
  • Элемент. преобразования над строками 1-го и 2-го типов: и . Элемент. преобразования над столбцами.
  • Ступенч. и строго ступенч. по строкам и по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду. Приведение к строго ступенч. виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) множество ненулевых строк ступенчатой матрицы из пункта (1) — базис пространства ;
    (3) количество ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Метод Гаусса — приведение матрицы к строго ступенч. виду. Главные и свободные переменные. Фундаментальная система решений.
  • Ранг линейного оператора : . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) ранг матрицы равен рангу линейного оператора ;
    (2) и ;
    (3) для любых обратимых матриц и выполнено ;
    (4) существуют такие обратимые матрицы и , что ;
    (5) и (то есть ранг матрицы по столбцам равен рангу матрицы по строкам).
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда
    (1) и, если , то ;
    (2) , а также, если , то , и, если , то
    — класс смежности по подпростр.-ву (и, значит, аффинное подпростр.-во размерности ).
  • Теорема о приведении матрицы линейного оператора к почти единичному виду. Пусть — поле, — векторные пространства над полем ,
    и ; тогда существуют такие упорядоченные базисы и , что .
2.2.2  Полилинейные операторы, симметричные и антисимметричные полилинейные формы, формы объема
  • Пространства полилинейных операторов и . Пространства полилинейных форм и .
  • Пространства билинейных операторов и . Пространства билинейных форм и . Примеры полилин.-х форм.
  • Представление (действие) группы в пространстве : , где .
  • Пространство симметричных полилинейных форм: .
  • Пр.-во антисимм. полилин. форм: .
  • Лемма о симметричных и антисимметричных полилинейных формах. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) ;
    (2) и, если , то "" можно заменить на "";
    (3) .
  • Пр.-во форм объема: ; . Форма объема, связанная с базисом: .
  • Теорема о формах объема. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) и ;
    (2) для любых выполнено и для любых выполнено ;
    (3) множество — базис пространства (и, значит, );
    (4) для любых и выполнено .
2.2.3  Определитель линейного оператора, миноры матрицы, ориентация векторного пространства над
  • Определитель линейного оператора (): , где и . Корректность опр.-я.
  • Операторная и матричная теоремы о главных свойствах определителя. Специальная линейная группа: .

    Операторная теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых и выполнено ;
    (2) и отображение — гомоморфизм моноидов по умножению.

    Матричная теорема о главных свойствах определителя. Пусть — поле и ; тогда
    (1) для любых определитель матрицы равен определителю линейного оператора ;
    (2) и отображение — гомоморфизм моноидов по умножению.

  • Миноры — определители квадр. подматриц. Дополнит. миноры. Присоедин. матрица: дополнит. минор матрицы в позиции .
  • Теорема о присоединенной матрице. Пусть — поле, и ; тогда
    (1) для любых выполнено и для любых выполнено
    (это формулы разложения определителя матрицы по -й строке матрицы и по -му столбцу матрицы соответственно);
    (2) для любых выполнено и для любых выполнено ;
    (3) и, если , то .
  • Правило Крамера. Пусть — поле, , , и ; тогда .
  • Теорема о базисном миноре. Пусть — поле, и ; тогда равен максимальному среди всех таких чисел ,
    что в матрице существует такая подматрица размера , что (то есть ).
  • Отнош.-е одинаковой ориентированности (): . Лемма о биекции между классами базисов и классами форм объема.

    Лемма о биекции между классами базисов и классами форм объема. Пусть — векторное пространство над полем и ;
    рассмотрим действие группы на множестве по правилу и рассмотрим множество орбит
    относительно этого действия; тогда отображение определено корректно и является биекцией.

  • Ориентация вект. пространства : элемент множества (или соответствующий ему элемент множества ).