Вычислительная геометрия
Лектор - Андрей Давыдов andrey.a.davydov@gmail.com
Домашние задания
Задание 1. Проверка принадлежности точки полигону
Дедлайн: 17.09
На вход N вершин полигона в формате (x, y) [abs(x), abs(y) <= 10^5] и M точек запроса. На выходе — M строк yes/no. Полигон всегда корректный, закрученный против часовой стрелки. Полигон считать замкнутым, т.е. для точек на границе ожидаемый ответ — yes.
input | output |
---|---|
3 |
yes |
Задание 2. Триангуляция монотонного полигона
Дедлайн: 1.10
На вход полигон в том же формате и с теми же ограничениями на координаты, что в первом задании. Гарантируется, что полигон монотонен относительно OX, закручен против часовой стрелки, и первая вершина в инпуте — самая левая. Требуется разбить его на треугольники. На выходе N-2 тройки индексов (номеров вершин полигона) — треугольники на соответствующих вершинах. Формат троек такой же как точек в инпуте, то есть (i, j, k). Треугольники должны быть закручены против часовой стрелки, среди возможных троек представляющих один и тот же треугольник нужно выбирать наименьшую лексикографически. Сами тройки могут идти в любом порядке. Вершины полигона нумеруются с 0.
Пример (неофициальный):
input | output |
---|---|
4 |
(0, 1, 2) |