Криптографические протоколы 4MIT осень 2017
Преподаватель: Афанасьева А.
Лекции
Лекция 1.
Основные понятия криптографии. Предмет и задачи. Определение шифра, понятие стойкости, предположения об исходных условиях криптоанализа, симметричные и асимметричные криптосистемы, хэш-функции, криптографические протоколы. История криптографии. Принцип Керкгоффса. Понятие абсолютной стойкости или теоретико-информационной стойкости.
Лекции 2 и 3. Симметричные криптосистемы. Потоковые шифры.
Одноразовый блокнот. Понятие псевдослучайности. Требования к поточным шифрам: Постулаты Голомба, профиль линейной сложности. Методы построения больших периодов в поточных шифрах. Статистические тесты. Применение к известным генераторам. Понятие псевдослучайного генератора (PRG) и его криптографическая стойкость. Семантическая стойкости криптосистемы.
Слайды: Медиа:Лекция2-3.pdf
Практика
Занятие 1. Исторические шифры и частотный криптоанализ.
Задание 1. Оценить теоретически количество зашифрованного текста (в символах) для успешного частотного криптоанализа и подтвердить результаты экспериментально, если известно, что открытый текст – это осмысленный текст на русском языке и была использована следующая система шифрования:
1) Шифр Цезаря;
2) Аффинный шифр;
3) Шифр Вижинера с известной длиной ключа (показать зависимость от длины ключа);
4) Шифр Вижинера с неизвестной длиной ключа (показать зависимость от длины ключа).
Задание 2.
Простым перестановочным шифром зашифрован некий текст, при этом известно, что в качестве открытого текста использован палиндром, в котором все пробелы и знаки препинания опущены. В результате шифрования получен следующий текст:
МТИССЛАИЛПНАОЛМУИЛОПИТУ
Необходимо:
1) Расшифровать текст,
2) Оценить, насколько можно уменьшить сложность перебора, используя информацию об исходном сообщении;
3) При программной реализации минимизировать количество возвращаемых вариантов ответа.
4) Позволяет ли успешный криптоанализ данного сообщения раскрыть ключ шифрования?
Задание 3.
Шифром простой замены зашифровано некоторое стихотворение, при этом сохранены все пробелы и знаки препинания, одинаковые символы заменены одинаковыми, а различные -- различными. В результате шифрования получился следующий текст:
Э рсдх ыъсг, фрьыя сяы тцорт срэдт Юрь нфурсау уцир нэръ, мрьыя Нрусиъ рнмясяэуцэяуц нурэрт, Нурэрт оячолжяуц ьрорыя.
1) Расшифровать текст,
2) Позволяет ли успешный криптоанализ данного сообщения раскрыть ключ шифрования?
Занятие 2. Потоковые шифры
Задача 1.
Рассмотреть генератор псевдослучайной последовательности. Вначале выбираются два больших простых числа p и q. Числа p и q должны быть оба сравнимы с 3 по модулю 4. Далее вычисляется число M = p* q, называемое целым числом Блюма. Затем выбирается другое случайное целое число х, взаимно простое с М. Вычисляем . называется стартовым числом генератора.
На каждом n-м шаге работы генератора вычисляется . Результатом n-го шага является бит чётности числа , то есть сумма по модулю 2 единиц в двоичном представлении элемента.
Для данного генератора оценить статистические свойства при помощи следующих тестов:
1) (monobit test) равно ли количество нулей и единиц;
2) (two-bit test) равно ли количество 00, 01, 10 и 11;
3) (poker test) равно ли количество разных последовательностей длины m;
4) (runs test) подходящее ли количество последовательностей идущих подряд нулей и единиц той или иной длины;
5) (autocorrelation test) одинаковая ли автокорреляция на разных сдвигах;
Построить для генератора профиль линейной сложности (+5 баллов)
Задача 2.
Пусть псевдослучайный генератор, про который известно, что для него по значениям последних n/2 бит можно построить первые n/2 бит.
Является ли данный генератор G предсказуемым для какого-либо i∈{0,n-1}?
Задача 3.
Доказать, что одноразовый блокнот является семантически стойким алгоритмом шифрования.
Задача 4.
Пусть криптографически стойкий псевдослучайный генератор (PRG), тогда потоковый шифр, основанный на нем, будет семантически стойким.
Чтобы подтвердить это утверждение докажите, что для любого атакующего шифр алгоритма A, существует алгоритм B для функции G, такой что: