Алгебра phys 1 февраль–март — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
__NOTOC__
 
__NOTOC__
 
<h2>2&nbsp; Линейная алгебра</h2>
 
<h2>2&nbsp; Линейная алгебра</h2>
 +
<table cellpadding="6" cellspacing="0">
 +
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-<br>научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-<br>щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического<br>анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-<br>нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство<br>приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.<br>Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности<br>малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы<br>является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной<br>алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной<br>двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-<br>лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.</td></tr><tr align="right"><td><i>А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия</i></td></tr></table></td></tr>
 +
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Одно из отличий математиков от физиков — стремление математиков назвать вещи своими именами. Примеров тому — масса,<br>особенно в двадцатом веке, когда произошло «размежевание» математики и физики.<br>Классический пример — линейная алгебра. То, что системы линейных уравнений имеют «какую-то структуру», понимали все, и<br>до Гаусса, и после. Соответственно, манипуляции с этими уравнениями, позволяющие решить систему или, скажем, привести<br>квадратичную форму к сумме квадратов, знали и физики, и инженеры, и математики. Но математики полезли на стенку и нашли<br>правильный язык: векторные пространства, линейные операторы, двойственные пространства и т.д. Это могло бы показаться<br>игрой со словами, но оказалось, что технически гораздо более сложные вещи (дифференциальные и интегральные уравнения)<br>также описываются на языке линейной алгебры, только бесконечномерной.<br>То же верно и в отношении других физических конструктов. Физики обнаружили экспериментальным путем (выписывая лист за<br>листом громоздкие формулы), что некоторые величины, задаваемые индексированными массивами данных, по-разному преоб-<br>разуются при замене координат, и назвали соответствующие величины тензорами. Это — чистая «феноменология», позволяю-<br>щая быстро проконтролировать вычисления на предмет ошибок (ну, или механизировать эти вычисления). Математики долго<br>пыхтели и сформулировали понятия симметрических и антисимметрических произведений векторных пространств и их двойст-<br>венных пространств и разобрались, откуда они возникают. В общем, исторический опыт убедительно подтверждает: если чело-<br>век узнал, что всю жизнь говорил прозой, то в дальнейшем ему легче жить с этим знанием. ;-)</td></tr><tr align="right"><td><i>По мотивам комментария в Живом Журнале ([http://avva.livejournal.com/2932837.html avva.livejournal.com/2932837.html])</i></td></tr></table></td></tr></table>
  
 
<h3>2.1&nbsp; Векторные пространства</h3>
 
<h3>2.1&nbsp; Векторные пространства</h3>
Строка 6: Строка 9:
 
<ul><li>Векторное пространство над полем <math>K</math> — абелева группа с умножением на скаляры из <math>K</math>, являющимся действием эндоморфизмами по сложению.
 
<ul><li>Векторное пространство над полем <math>K</math> — абелева группа с умножением на скаляры из <math>K</math>, являющимся действием эндоморфизмами по сложению.
 
<li>Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
 
<li>Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
<li>Гомоморфизмы векторных пространств (линейные операторы): <math>\mathrm{Hom}(V,Y)</math> — векторное пространство. Кольцо <math>\mathrm{End}(V)</math>, группа <math>\mathrm{GL}(V)=\mathrm{Aut}(V)</math>.
+
<li>Гомоморфизмы вект. пространств (линейные операторы): <math>\mathrm{Hom}(V,Y)</math> — вект. пространство. Кольцо <math>\mathrm{End}(V)</math>, группа <math>\mathrm{GL}(V)=\mathrm{End}(V)^\times\!=\mathrm{Aut}(V)</math>.
 
<li>Подпространство: <math>U\le V\,\Leftrightarrow\,U+U\subseteq U\,\land\,0\in U\,\land\,K\,U\subseteq U</math>. Подпростр.-во, порожд. мн.-вом <math>D</math>: <math>\langle D\rangle\le V\;\land\;\forall\,U\le V\;\bigl(D\subseteq U\,\Leftrightarrow\,\langle D\rangle\subseteq U\bigr)</math>.
 
<li>Подпространство: <math>U\le V\,\Leftrightarrow\,U+U\subseteq U\,\land\,0\in U\,\land\,K\,U\subseteq U</math>. Подпростр.-во, порожд. мн.-вом <math>D</math>: <math>\langle D\rangle\le V\;\land\;\forall\,U\le V\;\bigl(D\subseteq U\,\Leftrightarrow\,\langle D\rangle\subseteq U\bigr)</math>.
 
<li>Утверждение: <math>\langle D\rangle=\bigl\{\sum_{d\in D}f(d)\,d\mid f\in\mathrm{FinFunc}(D,K)\bigr\}</math>. Линейная комбинация элементов мн.-ва <math>D</math>: <math>\sum_{d\in D}f(d)\,d=f(d_1)\,d_1+\ldots+f(d_m)\,d_m</math>.
 
<li>Утверждение: <math>\langle D\rangle=\bigl\{\sum_{d\in D}f(d)\,d\mid f\in\mathrm{FinFunc}(D,K)\bigr\}</math>. Линейная комбинация элементов мн.-ва <math>D</math>: <math>\sum_{d\in D}f(d)\,d=f(d_1)\,d_1+\ldots+f(d_m)\,d_m</math>.
Строка 41: Строка 44:
 
<li><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k\le V</math>; обозначим через <math>\mathrm{add}</math><br>отображение <math>\biggl(\!\begin{align}V_1\oplus\ldots\oplus V_k&\to V\\(v_1,\ldots,v_k)&\mapsto v_1+\ldots+v_k\end{align}\!\biggr)</math>; тогда<br>(1) если <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math> и <math>B_1,\ldots,B_k</math> — базисы пространств <math>V_1,\ldots,V_k</math> соответственно, то множества <math>B_1,\ldots,B_k</math> попарно<br>не пересекаются и <math>B_1\cup\ldots\cup B_k</math> — базис пространства <math>V</math>;<br>(2) следующие условия эквивалентны: (у1) <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>, (у2) <math>\forall\,v\in V\;\exists!\,v_1\in V_1,\ldots,v_k\in V_k\;\bigl(v=v_1+\ldots+v_k\bigr)</math> и<br>(у3) <math>\forall\,i\in\{1,\ldots,k\}\;\bigl(V_i\cap(V_1+\ldots+V_{i-1}+V_{i+1}+\ldots+V_k)=\{0\}\bigr)\,\land\,V=V_1+\ldots+V_k</math>;<br>(3) если <math>\dim V<\infty</math>, то след. усл.-я эквивалентны: (у1) <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>, (у2) <math>\forall\,v\in V\;\exists!\,v_1\in V_1,\ldots,v_k\in V_k\;\bigl(v=v_1+\ldots+v_k\bigr)</math> и<br>(у3) <math>\forall\,i\in\{1,\ldots,k\}\;\bigl(V_i\cap(V_1+\ldots+V_{i-1}+V_{i+1}+\ldots+V_k)=\{0\}\bigr)\,\land\,\dim V=\dim V_1+\ldots+\dim V_k</math>;<br>(4) если <math>U,W\le V</math> и <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана).</i>
 
<li><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k\le V</math>; обозначим через <math>\mathrm{add}</math><br>отображение <math>\biggl(\!\begin{align}V_1\oplus\ldots\oplus V_k&\to V\\(v_1,\ldots,v_k)&\mapsto v_1+\ldots+v_k\end{align}\!\biggr)</math>; тогда<br>(1) если <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math> и <math>B_1,\ldots,B_k</math> — базисы пространств <math>V_1,\ldots,V_k</math> соответственно, то множества <math>B_1,\ldots,B_k</math> попарно<br>не пересекаются и <math>B_1\cup\ldots\cup B_k</math> — базис пространства <math>V</math>;<br>(2) следующие условия эквивалентны: (у1) <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>, (у2) <math>\forall\,v\in V\;\exists!\,v_1\in V_1,\ldots,v_k\in V_k\;\bigl(v=v_1+\ldots+v_k\bigr)</math> и<br>(у3) <math>\forall\,i\in\{1,\ldots,k\}\;\bigl(V_i\cap(V_1+\ldots+V_{i-1}+V_{i+1}+\ldots+V_k)=\{0\}\bigr)\,\land\,V=V_1+\ldots+V_k</math>;<br>(3) если <math>\dim V<\infty</math>, то след. усл.-я эквивалентны: (у1) <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>, (у2) <math>\forall\,v\in V\;\exists!\,v_1\in V_1,\ldots,v_k\in V_k\;\bigl(v=v_1+\ldots+v_k\bigr)</math> и<br>(у3) <math>\forall\,i\in\{1,\ldots,k\}\;\bigl(V_i\cap(V_1+\ldots+V_{i-1}+V_{i+1}+\ldots+V_k)=\{0\}\bigr)\,\land\,\dim V=\dim V_1+\ldots+\dim V_k</math>;<br>(4) если <math>U,W\le V</math> и <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана).</i>
 
<li>Внутренняя прямая сумма: <math>V=V_1\oplus\ldots\oplus V_k\,\Leftrightarrow\,\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>. Лемма об инвариантном подпространстве и матрице эндоморфизма.
 
<li>Внутренняя прямая сумма: <math>V=V_1\oplus\ldots\oplus V_k\,\Leftrightarrow\,\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>. Лемма об инвариантном подпространстве и матрице эндоморфизма.
<p><u>Лемма об инвариантном подпространстве и матрице эндоморфизма.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное простр.-во над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math>, <math>U\le V</math> и <math>a(U)\subseteq U</math> (то есть <math>U</math> — <math>a</math>-инвариантное подпространство), а также <math>n'=\dim U</math> и <math>n''=n-n'</math>; тогда<br>(1) существуют такие <math>e\in\mathrm{OB}(V)</math>, <math>a'\in\mathrm{Mat}(n',K)</math>, <math>a''\in\mathrm{Mat}(n'',K)</math> и <math>b\in\mathrm{Mat}(n',n'',K)</math>, что <math>a_e^e=\Bigl(\begin{smallmatrix}a'&b\\0&a''\!\end{smallmatrix}\Bigr)</math>;<br>(2) если <math>W\le V</math>, <math>V=U\oplus W</math> и <math>a(W)\subseteq W</math>, то существуют такие <math>e\in\mathrm{OB}(V)</math>, <math>a'\in\mathrm{Mat}(n',K)</math> и <math>a''\in\mathrm{Mat}(n'',K)</math>, что <math>a_e^e=\Bigl(\begin{smallmatrix}a'&0\\0&a''\!\end{smallmatrix}\Bigr)</math>.</i></p>
+
<p><u>Лемма об инвариантном подпространстве и матрице эндоморфизма.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное простр.-во над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math>, <math>U\le V</math> и <math>a(U)\subseteq U</math> (то есть <math>U</math> — <math>a</math>-инвариантное подпространство), а также <math>n'=\dim U</math> и <math>n''\!=n-n'</math>; тогда<br>(1) существуют такие <math>e\in\mathrm{OB}(V)</math>, <math>a'\in\mathrm{Mat}(n',K)</math>, <math>a''\in\mathrm{Mat}(n'',K)</math> и <math>b\in\mathrm{Mat}(n',n'',K)</math>, что <math>a_e^e=\Bigl(\begin{smallmatrix}a'&b\\0&a''\!\end{smallmatrix}\Bigr)</math>;<br>(2) если <math>W\le V</math>, <math>V=U\oplus W</math> и <math>a(W)\subseteq W</math>, то существуют такие <math>e\in\mathrm{OB}(V)</math>, <math>a'\in\mathrm{Mat}(n',K)</math> и <math>a''\in\mathrm{Mat}(n'',K)</math>, что <math>a_e^e=\Bigl(\begin{smallmatrix}a'&0\\0&a''\!\end{smallmatrix}\Bigr)</math>.</i></p>
 
<li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j=e_j^*=\bigl(v\mapsto(v^e)^j\bigr)</math>. Столбец <math>e^*\!=\biggl(\begin{smallmatrix}e^1\\\vdots\\e^n\end{smallmatrix}\biggr)</math>. Строка координат ковектора.
 
<li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j=e_j^*=\bigl(v\mapsto(v^e)^j\bigr)</math>. Столбец <math>e^*\!=\biggl(\begin{smallmatrix}e^1\\\vdots\\e^n\end{smallmatrix}\biggr)</math>. Строка координат ковектора.
 
<li>Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Изоморфизм <math>\biggl(\!\begin{align}V^*\!&\to K_n\!\\\lambda&\mapsto\lambda_e\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>, а также <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>.
 
<li>Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Изоморфизм <math>\biggl(\!\begin{align}V^*\!&\to K_n\!\\\lambda&\mapsto\lambda_e\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>, а также <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>.

Версия 02:30, 9 января 2017

2  Линейная алгебра

Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-
научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-
щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического
анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-
нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство
приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.
Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности
малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы
является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной
алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной
двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-
лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.
А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия
Одно из отличий математиков от физиков — стремление математиков назвать вещи своими именами. Примеров тому — масса,
особенно в двадцатом веке, когда произошло «размежевание» математики и физики.
Классический пример — линейная алгебра. То, что системы линейных уравнений имеют «какую-то структуру», понимали все, и
до Гаусса, и после. Соответственно, манипуляции с этими уравнениями, позволяющие решить систему или, скажем, привести
квадратичную форму к сумме квадратов, знали и физики, и инженеры, и математики. Но математики полезли на стенку и нашли
правильный язык: векторные пространства, линейные операторы, двойственные пространства и т.д. Это могло бы показаться
игрой со словами, но оказалось, что технически гораздо более сложные вещи (дифференциальные и интегральные уравнения)
также описываются на языке линейной алгебры, только бесконечномерной.
То же верно и в отношении других физических конструктов. Физики обнаружили экспериментальным путем (выписывая лист за
листом громоздкие формулы), что некоторые величины, задаваемые индексированными массивами данных, по-разному преоб-
разуются при замене координат, и назвали соответствующие величины тензорами. Это — чистая «феноменология», позволяю-
щая быстро проконтролировать вычисления на предмет ошибок (ну, или механизировать эти вычисления). Математики долго
пыхтели и сформулировали понятия симметрических и антисимметрических произведений векторных пространств и их двойст-
венных пространств и разобрались, откуда они возникают. В общем, исторический опыт убедительно подтверждает: если чело-
век узнал, что всю жизнь говорил прозой, то в дальнейшем ему легче жить с этим знанием. ;-)
По мотивам комментария в Живом Журнале (avva.livejournal.com/2932837.html)

2.1  Векторные пространства

2.1.1  Определения и конструкции, связанные с векторными пространствами
  • Векторное пространство над полем — абелева группа с умножением на скаляры из , являющимся действием эндоморфизмами по сложению.
  • Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
  • Гомоморфизмы вект. пространств (линейные операторы): — вект. пространство. Кольцо , группа .
  • Подпространство: . Подпростр.-во, порожд. мн.-вом : .
  • Утверждение: . Линейная комбинация элементов мн.-ва : .
  • Ядро и образ линейного оператора : и . Утверждение: и . Теорема о слоях и ядре линейного оператора.

    Теорема о слоях и ядре линейного оператора. Пусть — поле, — векторные пространства над полем и ; тогда
    (1) для любых и выполнено (и, значит, );
    (2) , если и только если .

  • Матричная запись системы из линейных урав.-й от переменных: , где , и . Однородная система: .
  • Утверждение: пусть ; тогда . Линейные дифференц. уравнения и системы уравнений.
2.1.2  Независимые множества, порождающие множества, базисы
  • — независимое мн.-во: . — порождающее мн.-во: . Базис — независ. порожд. мн.-во.
  • Стандартные базисы пространств , и : , и .
  • Теорема о свойствах базиса. Пусть — поле, — векторное пространство над полем и ; тогда следующие условия эквивалентны:
    (у1) — базис пространства ;
    (у2) отображение — изоморфизм векторных пространств;
    (у3) для любого вектора существует единственная такая функция , что ;
    (у4) — независимое подмножество в и для любого вектора множество не является независимым подмножеством в
    (то есть — максимальное независимое множество);
    (у5) — порождающее подмножество в и для любого вектора множество не является порождающим подмножеством в
    (то есть — минимальное порождающее множество).
  • Теорема об универсальности базиса. Пусть — поле, — векторные пространства над полем и — базис пространства ; тогда
    для любых существует единственный такой линейный оператор , что (и, значит, отображение
    — изоморфизм векторных пространств).
  • Теорема о базисах и линейных операторах. Пусть — поле, — вект. пр.-ва над , — базис пространства и ; тогда
    (1) , если и только если и — независимое множество;
    (2) , если и только если — порождающее множество;
    (3) , если и только если и — базис.
  • Теорема о порядках независимых и порождающих множеств. Пусть — поле, — вект. простр.-во над полем , и ; тогда
    (1) если — независимое множество и , то ;
    (2) если и — базисы пространства , то .
  • Теорема о построении базиса. Пусть — поле, — векторное пространство над полем , и , а также в пространстве
    существует конечное порождающее подмножество; тогда
    (1) если — независимое множество, то существует такой базис пространства , что (то есть можно дополнить до базиса);
    (2) если — порождающее множество, то существует такой базис пространства , что (то есть из можно выделить базис);
    (3) в пространстве существует базис.
2.1.3  Размерность, координаты, замена координат
  • Размерность пространства : порядок (мощность) базиса. Примеры: , , .
  • Теорема о свойствах размерности. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любого независимого подмножества в выполнено и, если , то — базис;
    (2) для любого порождающего подмножества в выполнено и, если , то — базис;
    (3) для любого подпространства в выполнено и, если , то .
  • Теорема о размерности и линейных операторах. Пусть — поле, — векторные пространства над полем и ; тогда
    (1) , если и только если ;
    (2) , если и только если ;
    (3) , если и только если ;
    (4) если , то (это принцип Дирихле для линейных операторов).
  • Множество упорядоченных базисов: . Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств .
  • Матрица линейн. оператора : . Теорема о матрице линейного оператора. Изоморфизм колец и вект. пр.-в .

    Теорема о матрице линейного оператора.
    (1) Пусть — поле, — векторные пространства над полем , , , и ; тогда
    , а также отображения и
    взаимно обратные изоморфизмы векторных пространств.
    (2) Пусть — поле, — векторные пространства над полем , , , и ,
    а также и ; тогда .

  • Матрицы замены координат и замены базиса (): и . Пример: . Утверждение: , .
  • Преобразование столбца координат вектора: ; то же в покомпонентной записи: . Преобразование базиса: .
  • Преобразование матрицы линейного оператора: ; то же в покомпонентной записи (если ): .
2.1.4  Факторпространства, прямая сумма векторных пространств, двойственное пространство
  • Факторпростр.-во: с фактороперациями (). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: .

    Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .

  • Теорема о факторпространстве. Пусть — поле, — вект. пр.-во над , , — базис пр.-ва , — базис пр.-ва и ; тогда
    (1) все классы смежности , где , попарно различны и вместе образуют базис пространства ;
    (2) если , то ;
    (3) если , — вект. пр.-во над и , то (это теорема о размерностях ядра и образа).
  • Прямая сумма : с покомпонентными операциями. Обобщение ( — мн.-во): .
  • Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем , и ; обозначим через
    отображение ; тогда
    (1) если и — базисы пространств соответственно, то множества попарно
    не пересекаются и — базис пространства ;
    (2) следующие условия эквивалентны: (у1) , (у2) и
    (у3) ;
    (3) если , то след. усл.-я эквивалентны: (у1) , (у2) и
    (у3) ;
    (4) если и , то (это формула Грассмана).
  • Внутренняя прямая сумма: . Лемма об инвариантном подпространстве и матрице эндоморфизма.

    Лемма об инвариантном подпространстве и матрице эндоморфизма. Пусть — поле, — векторное простр.-во над полем , ,
    , и (то есть -инвариантное подпространство), а также и ; тогда
    (1) существуют такие , , и , что ;
    (2) если , и , то существуют такие , и , что .

  • Двойственное пространство: . Двойственный базис: . Столбец . Строка координат ковектора.
  • Утверждение: . Изоморфизм . Преобразования при замене базиса: и , а также .
  • Двойственный оператор (): . Утверждение: пусть ; тогда — изоморфизм.

СВОДНАЯ ТАБЛИЦА О КООРДИНАТАХ
(в таблице — поле, — векторное пространство над полем , и )
Инвариантный объектКоординаты
относительно базиса
Преобразование координат
при замене базиса
Пример использования
в геометрии и физике
вектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
скорость в точке
гладкого пути
на многообразии
ковектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
дифференциал в точке
гладкой функции (скалярного поля)
на многообразии
эндоморфизм
элемент пространства
(тензор типа над )

(это изоморфизм колец
и векторных пространств)
матричная запись:
покомпонентная запись:
дифференциал в неподвижной точке
гладкого отображения,
действующего из многообразия в себя

2.2  Линейные операторы (часть 1)

2.2.1  Элементарные преобразования, метод Гаусса, ранг линейного оператора
  • Элементарные матрицы: трансвекции , псевдоотражения .
  • Элемент. преобразования над строками 1-го и 2-го типов: и . Элемент. преобразования над столбцами.
  • Ступенч. и строго ступенч. по строкам и по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду. Приведение к строго ступенч. виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) множество ненулевых строк ступенчатой матрицы из пункта (1) — базис пространства ;
    (3) количество ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Метод Гаусса — приведение матрицы к строго ступенч. виду. Главные и свободные переменные. Фундаментальная система решений.
  • Ранг линейного оператора : . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) ранг матрицы равен рангу линейного оператора ;
    (2) и ;
    (3) для любых обратимых матриц и выполнено ;
    (4) существуют такие обратимые матрицы и , что ;
    (5) и (то есть ранг матрицы по столбцам равен рангу матрицы по строкам).
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда
    (1) , и, если , то ;
    (2) если , то ;
    (3) если , то — класс смежности пространства по подпространству .
  • Теорема о приведении матрицы линейного оператора к почти единичному виду. Пусть — поле, — векторные пространства над полем ,
    и ; тогда существуют такие упорядоченные базисы и , что .
2.2.2  Полилинейные отображения, симметричные и антисимметричные полилинейные формы, формы объема
  • Пространства полилинейных отображений , . Пространства полилинейных форм , .
  • Пространства билинейных отображений , . Пространства билинейных форм , . Примеры полилин. форм.
  • Представление (действие) группы в пространстве : , где .
  • Пространство симметричных полилинейных форм: .
  • Пр.-во антисимм. полилин. форм: .
  • Лемма о симметричных и антисимметричных полилинейных формах. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) ;
    (2) и, если , то "" можно заменить на "";
    (3) .
  • Пр.-во форм объема: ; . Форма объема, связанная с базисом: .
  • Теорема о формах объема. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) и ;
    (2) для любых выполнено и для любых выполнено ;
    (3) множество — базис пространства (и, значит, );
    (4) для любых и выполнено .
2.2.3  Определитель линейного оператора, миноры матрицы, ориентация векторного пространства над
  • Определитель линейного оператора (): , где и . Корректность опр.-я.
  • Операторная и матричная теоремы о главных свойствах определителя. Специальная линейная группа: .

    Операторная теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых и выполнено ;
    (2) и отображение — гомоморфизм моноидов по умножению.

    Матричная теорема о главных свойствах определителя. Пусть — поле и ; тогда
    (1) для любых определитель матрицы равен определителю линейного оператора ;
    (2) и отображение — гомоморфизм моноидов по умножению.

  • Миноры — определители подматриц. Дополнит. миноры. Присоединенная матрица: дополнит. минор матрицы в позиции .
  • Теорема о присоединенной матрице. Пусть — поле, и ; тогда
    (1) для любых выполнено и для любых выполнено ;
    (2) для любых выполнено и для любых выполнено
    (это формулы разложения определителя матрицы по -й строке матрицы и по -му столбцу матрицы соответственно);
    (3) и, если , то .
  • Правило Крамера. Пусть — поле, , , и ; тогда .
  • Теорема о базисном миноре. Пусть — поле, и ; тогда равен максимальному среди всех таких чисел ,
    что в матрице существует такая подматрица размера , что (то есть ).
  • Отнош.-е одинаковой ориентированности (): . Лемма о биекции между классами базисов и классами форм объема.

    Лемма о биекции между классами базисов и классами форм объема. Пусть — вект. простр.-во над полем и ; рассмотрим
    множество орбит относительно действия ; тогда отображения и
    определены корректно и являются взаимно обратными биекциями.

  • Ориентация вект. пространства : элемент множества (или соответствующий ему элемент множества ).