Алгебра phys 1 февраль–март — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 29: | Строка 29: | ||
<li>Множество упорядоченных базисов: <math>\mathrm{OB}(V)</math>. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств <math>\biggl(\!\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}\!\biggr)</math>. | <li>Множество упорядоченных базисов: <math>\mathrm{OB}(V)</math>. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств <math>\biggl(\!\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}\!\biggr)</math>. | ||
<li>Матрица линейн. оператора <math>a</math>: <math>(a_e^h)^\bullet_j=a(e_j)^h</math>. Теорема о матрице линейного оператора. Изоморфизм колец и вект. пр.-в <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{Mat}(n,K)\\a&\mapsto a_e^e\end{align}\!\biggr)</math>. | <li>Матрица линейн. оператора <math>a</math>: <math>(a_e^h)^\bullet_j=a(e_j)^h</math>. Теорема о матрице линейного оператора. Изоморфизм колец и вект. пр.-в <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{Mat}(n,K)\\a&\mapsto a_e^e\end{align}\!\biggr)</math>. | ||
− | <p><u>Теорема о матрице линейного оператора.</u><br><i>(1) Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>p=\dim Y<\infty</math>, <math>e\in\mathrm{OB}(V)</math> и <math>h\in\mathrm{OB}(Y)</math>; тогда<br><math>\forall\,a\in\mathrm{Hom}(V,Y),\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math>, а также отображения <math>\biggl(\!\begin{align}\mathrm{Hom}(V,Y)&\to\mathrm{Mat}(p,n,K)\\a&\mapsto a_e^h\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{Mat}(p,n,K)&\to\mathrm{Hom}(V,Y)\\a&\mapsto\bigl(v\mapsto h\cdot a\cdot v^e\bigr)\!\end{align}\!\biggr)</math><br> | + | <p><u>Теорема о матрице линейного оператора.</u><br><i>(1) Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>p=\dim Y<\infty</math>, <math>e\in\mathrm{OB}(V)</math> и <math>h\in\mathrm{OB}(Y)</math>; тогда<br><math>\forall\,a\in\mathrm{Hom}(V,Y),\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math>, а также отображения <math>\biggl(\!\begin{align}\mathrm{Hom}(V,Y)&\to\mathrm{Mat}(p,n,K)\\a&\mapsto a_e^h\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{Mat}(p,n,K)&\to\mathrm{Hom}(V,Y)\\a&\mapsto\bigl(v\mapsto h\cdot a\cdot v^e\bigr)\!\end{align}\!\biggr)</math> —<br>взаимно обратные изоморфизмы векторных пространств.<br>(2) Пусть <math>K</math> — поле, <math>V,X,Z</math> — векторные пространства над полем <math>K</math>, <math>\dim V,\dim X,\dim Z<\infty</math>, <math>e\in\mathrm{OB}(V)</math>, <math>f\in\mathrm{OB}(X)</math> и <math>g\in\mathrm{OB}(Z)</math>,<br>а также <math>a\in\mathrm{Hom}(V,X)</math> и <math>b\in\mathrm{Hom}(X,Z)</math>; тогда <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.</i></p> |
<li>Матрицы замены координат и замены базиса (<math>e,\tilde e\in\mathrm{OB}(V)</math>): <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math> и <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Пример: <math>\mathrm c_e^\underline e\!=e</math>. Утверждение: <i><math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e</math>, <math>\mathrm c_e^\tilde e=(\mathrm c_\tilde e^e)^{-1}</math></i>. | <li>Матрицы замены координат и замены базиса (<math>e,\tilde e\in\mathrm{OB}(V)</math>): <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math> и <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Пример: <math>\mathrm c_e^\underline e\!=e</math>. Утверждение: <i><math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e</math>, <math>\mathrm c_e^\tilde e=(\mathrm c_\tilde e^e)^{-1}</math></i>. | ||
− | <li> | + | <li>Преобразование столбца координат вектора: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math>; то же в покомпонентной записи: <math>v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k</math>. Преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math>. |
<li>Преобразование матрицы линейного оператора: <math>a_\tilde e^\tilde h=\mathrm c_h^\tilde h\cdot a_e^h\cdot\mathrm c_\tilde e^e</math>; то же в покомпонентной записи (если <math>a\in\mathrm{End}(V)</math>): <math>a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</ul> | <li>Преобразование матрицы линейного оператора: <math>a_\tilde e^\tilde h=\mathrm c_h^\tilde h\cdot a_e^h\cdot\mathrm c_\tilde e^e</math>; то же в покомпонентной записи (если <math>a\in\mathrm{End}(V)</math>): <math>a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</ul> | ||
Строка 39: | Строка 39: | ||
<li><u>Теорема о факторпространстве.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>U\le V</math>, <math>A</math> — базис пр.-ва <math>U</math>, <math>B</math> — базис пр.-ва <math>V</math> и <math>A\subseteq B</math>; тогда<br>(1) все классы смежности <math>b+U</math>, где <math>b\in B\!\setminus\!A</math>, попарно различны и вместе образуют базис пространства <math>V/U</math>;<br>(2) если <math>\dim V<\infty</math>, то <math>\dim V/U=\dim V-\dim U</math>;<br>(3) если <math>\dim V<\infty</math>, <math>Y</math> — вект. пр.-во над <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>, то <math>\dim\mathrm{Ker}\,a+\dim\mathrm{Im}\,a=\dim V</math> (это теорема о размерностях ядра и образа).</i> | <li><u>Теорема о факторпространстве.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>U\le V</math>, <math>A</math> — базис пр.-ва <math>U</math>, <math>B</math> — базис пр.-ва <math>V</math> и <math>A\subseteq B</math>; тогда<br>(1) все классы смежности <math>b+U</math>, где <math>b\in B\!\setminus\!A</math>, попарно различны и вместе образуют базис пространства <math>V/U</math>;<br>(2) если <math>\dim V<\infty</math>, то <math>\dim V/U=\dim V-\dim U</math>;<br>(3) если <math>\dim V<\infty</math>, <math>Y</math> — вект. пр.-во над <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>, то <math>\dim\mathrm{Ker}\,a+\dim\mathrm{Im}\,a=\dim V</math> (это теорема о размерностях ядра и образа).</i> | ||
<li>Прямая сумма <math>U\oplus W</math>: <math>U\times W</math> с покомпонентными операциями. Обобщение (<math>I</math> — мн.-во): <math>\bigoplus_{i\in I}V_i=\{f\in\mathrm{FinFunc}(I,\bigcup_{i\in I}V_i)\mid\forall\,i\in I\;\bigl(f(i)\in V_i\bigr)\}</math>. | <li>Прямая сумма <math>U\oplus W</math>: <math>U\times W</math> с покомпонентными операциями. Обобщение (<math>I</math> — мн.-во): <math>\bigoplus_{i\in I}V_i=\{f\in\mathrm{FinFunc}(I,\bigcup_{i\in I}V_i)\mid\forall\,i\in I\;\bigl(f(i)\in V_i\bigr)\}</math>. | ||
+ | <li><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k\le V</math>; обозначим через <math>\mathrm{add}</math><br>отображение <math>\biggl(\!\begin{align}V_1\oplus\ldots\oplus V_k&\to V\\(v_1,\ldots,v_k)&\mapsto v_1+\ldots+v_k\end{align}\!\biggr)</math>; тогда<br>(1) если <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math> и <math>B_1,\ldots,B_k</math> — базисы пространств <math>V_1,\ldots,V_k</math> соответ.-но, то <math>B_1\cup\ldots\cup B_k</math> — базис пространства <math>V</math>;<br>(2) следующие условия эквивалентны: (у1) <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>, (у2) <math>\forall\,v\in V\;\exists!\,v_1\in V_1,\ldots,v_k\in V_k\;\bigl(v=v_1+\ldots+v_k\bigr)</math> и<br>(у3) <math>\forall\,i\in\{1,\ldots,k\}\;\bigl(V_i\cap(V_1+\ldots+V_{i-1}+V_{i+1}+\ldots+V_k)=\{0\}\bigr)\,\land\,V=V_1+\ldots+V_k</math>;<br>(3) если <math>\dim V<\infty</math>, то след. усл.-я эквивалентны: (у1) <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>, (у2) <math>\forall\,v\in V\;\exists!\,v_1\in V_1,\ldots,v_k\in V_k\;\bigl(v=v_1+\ldots+v_k\bigr)</math> и<br>(у3) <math>\forall\,i\in\{1,\ldots,k\}\;\bigl(V_i\cap(V_1+\ldots+V_{i-1}+V_{i+1}+\ldots+V_k)=\{0\}\bigr)\,\land\,\dim V=\dim V_1+\ldots+\dim V_k</math>;<br>(4) если <math>U,W\le V</math> и <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана).</i> | ||
+ | <li>Внутренняя прямая сумма: <math>V=V_1\oplus\ldots\oplus V_k\,\Leftrightarrow\,\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>. Лемма об инвариантном подпространстве и матрице эндоморфизма. | ||
+ | <p><u>Лемма об инвариантном подпространстве и матрице эндоморфизма.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное простр.-во над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math>, <math>U\le V</math> и <math>a(U)\subseteq U</math> (то есть <math>U</math> — <math>a</math>-инвариантное подпространство), а также <math>n'=\dim U</math> и <math>n''=n-n'</math>; тогда<br>(1) существуют такие <math>e\in\mathrm{OB}(V)</math>, <math>a'\in\mathrm{Mat}(n',K)</math>, <math>a''\in\mathrm{Mat}(n'',K)</math> и <math>b\in\mathrm{Mat}(n',n'',K)</math>, что <math>a_e^e=\Bigl(\begin{smallmatrix}a'&b\\0&a''\!\end{smallmatrix}\Bigr)</math>;<br>(2) если <math>W\le V</math>, <math>V=U\oplus W</math> и <math>a(W)\subseteq W</math>, то существуют такие <math>e\in\mathrm{OB}(V)</math>, <math>a'\in\mathrm{Mat}(n',K)</math> и <math>a''\in\mathrm{Mat}(n'',K)</math>, что <math>a_e^e=\Bigl(\begin{smallmatrix}a'&0\\0&a''\!\end{smallmatrix}\Bigr)</math>.</i></p> | ||
+ | <li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j=e_j^*=\bigl(v\mapsto(v^e)^j\bigr)</math>. Столбец <math>e^*\!=\biggl(\begin{smallmatrix}e^1\\\vdots\\e^n\end{smallmatrix}\biggr)</math>. Строка координат ковектора. | ||
+ | <li>Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Изоморфизм <math>\biggl(\!\begin{align}V^*\!&\to K_n\!\\\lambda&\mapsto\lambda_e\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>, а также <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>. | ||
+ | <li>Сопоставление <math>a\mapsto a^*</math>: <math>\biggl(\!\begin{align}*\,\colon\mathrm{Hom}(V,Y)&\to\mathrm{Hom}(Y^*,V^*)\\a&\mapsto\bigl(\xi\mapsto\xi\circ a\bigr)\end{align}\!\biggr)</math>. Утверждение: <i>пусть <math>\dim V<\infty</math>; тогда <math>\biggl(\!\begin{align}V&\to V^{**}\\v&\mapsto\bigl(\lambda\mapsto\lambda(v)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм</i>.</ul> | ||
− | <!-- | + | <!--<li>Сводная таблица о координатах. (В таблице <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e,\tilde e\in\mathrm{OB}(V)</math>.) |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <li>Сводная таблица о координатах. (В таблице <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e,\tilde e\in\mathrm{OB}(V)</math>.) | + | |
− | + | ||
<p><table border cellpadding="3" cellspacing="0"> | <p><table border cellpadding="3" cellspacing="0"> | ||
<tr><th>Инвариантный объект</th><th>Координаты<br>относительно базиса</th><th>Преобразование координат<br>при замене базиса</th><th>Пример использования<br>в геометрии и физике</th></tr> | <tr><th>Инвариантный объект</th><th>Координаты<br>относительно базиса</th><th>Преобразование координат<br>при замене базиса</th><th>Пример использования<br>в геометрии и физике</th></tr> | ||
Строка 68: | Строка 67: | ||
<td>дифференциал в неподвижной точке<br>гладкого отображения,<br>действующего из многообразия в себя</td></tr></table></p> | <td>дифференциал в неподвижной точке<br>гладкого отображения,<br>действующего из многообразия в себя</td></tr></table></p> | ||
− | <h3>2.2 Линейные операторы (часть 1)</h3> | + | <!--<h3>2.2 Линейные операторы (часть 1)</h3> |
<h5>2.2.1 Элементарные матрицы и приведение к ступенчатому виду</h5> | <h5>2.2.1 Элементарные матрицы и приведение к ступенчатому виду</h5> | ||
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\mathrm{se}_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\mathrm{se}_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>. | <ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\mathrm{se}_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\mathrm{se}_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>. |
Версия 05:05, 6 января 2017
2 Линейная алгебра
2.1 Векторные пространства
2.1.1 Определения и конструкции, связанные с векторными пространствами
- Векторное пространство над полем — абелева группа с умножением на скаляры из , являющимся действием эндоморфизмами по сложению.
- Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
- Гомоморфизмы векторных пространств (линейные операторы): — векторное пространство. Кольцо , группа .
- Подпространство: . Подпростр.-во, порожд. мн.-вом : .
- Утверждение: . Линейная комбинация элементов мн.-ва : .
- Ядро и образ линейного оператора : и . Утверждение: и . Теорема о слоях и ядре линейного оператора.
Теорема о слоях и ядре линейного оператора. Пусть — поле, — векторные пространства над полем и ; тогда
(1) для любых и выполнено (и, значит, );
(2) , если и только если . - Матричная запись системы из линейных урав.-й от переменных: , где , , . Однородная система: .
- Утверждение: пусть ; тогда . Линейные дифференц. уравнения и системы уравнений.
2.1.2 Независимые множества, порождающие множества, базисы
- — независимое мн.-во: . — порождающее мн.-во: . Базис — независ. порожд. мн.-во.
- Стандартные базисы пространств , и : , и .
- Теорема о свойствах базиса. Пусть — поле, — векторное пространство над полем и ; тогда следующие условия эквивалентны:
(у1) — базис пространства ;
(у2) отображение — изоморфизм векторных пространств;
(у3) для любого вектора существует единственная такая функция , что ;
(у4) — независимое подмножество в и для любого вектора множество не является независимым подмножеством в
(то есть — максимальное независимое множество);
(у5) — порождающее подмножество в и для любого вектора множество не является порождающим подмножеством в
(то есть — минимальное порождающее множество). - Теорема об универсальности базиса. Пусть — поле, — векторные пространства над полем и — базис пространства ; тогда
для любых существует единственный такой линейный оператор , что (и, значит, отображение
— изоморфизм векторных пространств). - Теорема о базисах и линейных операторах. Пусть — поле, — вект. пр.-ва над , — базис пространства и ; тогда
(1) , если и только если — независимое множество;
(2) , если и только если — порождающее множество;
(3) , если и только если — базис пространства . - Теорема о порядках независимых и порождающих множеств. Пусть — поле, — вект. простр.-во над полем , и ; тогда
(1) если — независимое множество и , то ;
(2) если и — базисы пространства , то . - Теорема о построении базиса. Пусть — поле, — векторное пространство над полем , и , а также в пространстве
существует конечное порождающее подмножество; тогда
(1) если — независимое множество, то существует такой базис пространства , что (то есть можно дополнить до базиса);
(2) если — порождающее множество, то существует такой базис пространства , что (то есть из можно выделить базис);
(3) в пространстве существует базис.
2.1.3 Размерность и координаты
- Размерность пространства : порядок (мощность) базиса. Примеры: , , .
- Теорема о свойствах размерности. Пусть — поле, — векторное простр.-во над полем , , — независимое подмножество в ,
— порождающее подмножество в и ; тогда
(1) и, если , то — базис пространства ;
(2) и, если , то — базис пространства ;
(3) и, если , то . - Теорема о размерности и линейных операторах. Пусть — поле, — векторные пространства над полем и ; тогда
(1) , если и только если ;
(2) , если и только если ;
(3) , если и только если ;
(4) если , то (это принцип Дирихле для линейных операторов). - Множество упорядоченных базисов: . Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств .
- Матрица линейн. оператора : . Теорема о матрице линейного оператора. Изоморфизм колец и вект. пр.-в .
Теорема о матрице линейного оператора.
(1) Пусть — поле, — векторные пространства над полем , , , и ; тогда
, а также отображения и —
взаимно обратные изоморфизмы векторных пространств.
(2) Пусть — поле, — векторные пространства над полем , , , и ,
а также и ; тогда . - Матрицы замены координат и замены базиса (): и . Пример: . Утверждение: , .
- Преобразование столбца координат вектора: ; то же в покомпонентной записи: . Преобразование базиса: .
- Преобразование матрицы линейного оператора: ; то же в покомпонентной записи (если ): .
2.1.4 Факторпространства, прямая сумма векторных пространств, двойственное пространство
- Факторпростр.-во: с фактороперациями (). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: .
Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
- Теорема о факторпространстве. Пусть — поле, — вект. пр.-во над , , — базис пр.-ва , — базис пр.-ва и ; тогда
(1) все классы смежности , где , попарно различны и вместе образуют базис пространства ;
(2) если , то ;
(3) если , — вект. пр.-во над и , то (это теорема о размерностях ядра и образа). - Прямая сумма : с покомпонентными операциями. Обобщение ( — мн.-во): .
- Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем , и ; обозначим через
отображение ; тогда
(1) если и — базисы пространств соответ.-но, то — базис пространства ;
(2) следующие условия эквивалентны: (у1) , (у2) и
(у3) ;
(3) если , то след. усл.-я эквивалентны: (у1) , (у2) и
(у3) ;
(4) если и , то (это формула Грассмана). - Внутренняя прямая сумма: . Лемма об инвариантном подпространстве и матрице эндоморфизма.
Лемма об инвариантном подпространстве и матрице эндоморфизма. Пусть — поле, — векторное простр.-во над полем , ,
, и (то есть — -инвариантное подпространство), а также и ; тогда
(1) существуют такие , , и , что ;
(2) если , и , то существуют такие , и , что . - Двойственное пространство: . Двойственный базис: . Столбец . Строка координат ковектора.
- Утверждение: . Изоморфизм . Преобразования при замене базиса: и , а также .
- Сопоставление : . Утверждение: пусть ; тогда — изоморфизм.