Алгебра phys 1 февраль–март — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 5: Строка 5:
 
<h5>2.1.1&nbsp; Определения и конструкции, связанные с векторными пространствами</h5>
 
<h5>2.1.1&nbsp; Определения и конструкции, связанные с векторными пространствами</h5>
 
<ul><li>Векторное пространство над полем <math>K</math> — абелева группа с умножением на скаляры из <math>K</math>, являющимся действием эндоморфизмами по сложению.
 
<ul><li>Векторное пространство над полем <math>K</math> — абелева группа с умножением на скаляры из <math>K</math>, являющимся действием эндоморфизмами по сложению.
<li>Гомоморфизмы векторных пространств (линейные операторы): <math>\mathrm{Hom}(V,Y)</math> — векторное пространство. Кольцо <math>\mathrm{End}(V)</math>, группа <math>\mathrm{GL}(V)=\mathrm{Aut}(V)</math>.
 
 
<li>Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
 
<li>Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
 +
<li>Гомоморфизмы векторных пространств (линейные операторы): <math>\mathrm{Hom}(V,Y)</math> — векторное пространство. Кольцо <math>\mathrm{End}(V)</math>, группа <math>\mathrm{GL}(V)=\mathrm{Aut}(V)</math>.
 
<li>Подпространство: <math>U\le V\,\Leftrightarrow\,U+U\subseteq U\,\land\,0\in U\,\land\,K\,U\subseteq U</math>. Подпростр.-во, порожд. мн.-вом <math>D</math>: <math>\langle D\rangle\le V\;\land\;\forall\,U\le V\;\bigl(D\subseteq U\,\Leftrightarrow\,\langle D\rangle\subseteq U\bigr)</math>.
 
<li>Подпространство: <math>U\le V\,\Leftrightarrow\,U+U\subseteq U\,\land\,0\in U\,\land\,K\,U\subseteq U</math>. Подпростр.-во, порожд. мн.-вом <math>D</math>: <math>\langle D\rangle\le V\;\land\;\forall\,U\le V\;\bigl(D\subseteq U\,\Leftrightarrow\,\langle D\rangle\subseteq U\bigr)</math>.
 
<li>Утверждение: <math>\langle D\rangle=\bigl\{\sum_{d\in D}f(d)\,d\mid f\in\mathrm{FinFunc}(D,K)\bigr\}</math>. Линейная комбинация элементов мн.-ва <math>D</math>: <math>\sum_{d\in D}f(d)\,d=f(d_1)\,d_1+\ldots+f(d_m)\,d_m</math>.
 
<li>Утверждение: <math>\langle D\rangle=\bigl\{\sum_{d\in D}f(d)\,d\mid f\in\mathrm{FinFunc}(D,K)\bigr\}</math>. Линейная комбинация элементов мн.-ва <math>D</math>: <math>\sum_{d\in D}f(d)\,d=f(d_1)\,d_1+\ldots+f(d_m)\,d_m</math>.
<li>Ядро и образ линейного оператора <math>a</math>: <math>\mathrm{Ker}\,a=a^{-1}(0)</math> и <math>\mathrm{Im}\,a</math>. Утверждение: <i><math>\mathrm{Ker}\,a\le V</math>, <math>\mathrm{Im}\,a\le Y</math></i>. Теорема о слоях и ядре гомоморфизма. Примеры.
+
<li>Ядро и образ линейного оператора <math>a</math>: <math>\mathrm{Ker}\,a=a^{-1}(0)</math> и <math>\mathrm{Im}\,a</math>. Утверждение: <i><math>\mathrm{Ker}\,a\le V</math> и <math>\,\mathrm{Im}\,a\le Y</math></i>. Теорема о слоях и ядре гомоморфизма.
 
<p><u>Теорема о слоях и ядре гомоморфизма.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>; тогда<br>(1) для любых <math>y\in Y</math> и <math>v_0\in a^{-1}(y)</math> выполнено <math>a^{-1}(y)=v_0+\mathrm{Ker}\,a</math> (и, значит, <math>\{a^{-1}(y)\mid y\in\mathrm{Im}\,a\}=V/\,\mathrm{Ker}\,a</math>);<br>(2) <math>a\in\mathrm{Inj}(V,Y)</math>, если и только если <math>\,\mathrm{Ker}\,a=\{0\}</math>.</i></p>
 
<p><u>Теорема о слоях и ядре гомоморфизма.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>; тогда<br>(1) для любых <math>y\in Y</math> и <math>v_0\in a^{-1}(y)</math> выполнено <math>a^{-1}(y)=v_0+\mathrm{Ker}\,a</math> (и, значит, <math>\{a^{-1}(y)\mid y\in\mathrm{Im}\,a\}=V/\,\mathrm{Ker}\,a</math>);<br>(2) <math>a\in\mathrm{Inj}(V,Y)</math>, если и только если <math>\,\mathrm{Ker}\,a=\{0\}</math>.</i></p>
<li>Факторпростр.-во: <math>V/U</math> с фактороперациями (<math>U\le V</math>). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: <math>K^n\!/\langle\underline e_i\rangle\cong K^{n-1}</math>.
+
<li>Матричная запись системы из <math>p</math> линейных урав.-й от <math>n</math> переменных: <math>a\cdot x=y</math>, где <math>x\in K^n</math>, <math>y\in K^p</math>, <math>a\in\mathrm{Mat}(p,n,K)</math>. Однородная система: <math>y=0</math>.
<p><u>Теорема о гомоморфизме.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>; тогда <math>V/\,\mathrm{Ker}\,a\cong\mathrm{Im}\,a</math>.</i></p>
+
<li>Утверждение: <i>пусть <math>a\cdot x_0=y</math>; тогда <math>\{x\in K^n\!\mid a\cdot x=y\}=x_0+\{x\in K^n\!\mid a\cdot x=0\}</math></i>. Линейные дифференц. уравнения и системы уравнений.</ul>
<li>Прямая сумма <math>U\oplus W</math>: <math>U\times W</math> с покомпонентными операциями. Обобщение (<math>I</math> — мн.-во): <math>\bigoplus_{i\in I}V_i=\{f\in\mathrm{FinFunc}(I,\bigcup_{i\in I}V_i)\mid\forall\,i\in I\;\bigl(f(i)\in V_i\bigr)\}</math>.</ul>
+
  
<h5>2.1.2&nbsp; Базисы, координаты, размерность</h5>
+
<h5>2.1.2&nbsp; Базисы и размерность векторного пространства</h5>
 
<ul><li><math>C</math> — независимое подмножество в <math>V</math>: <math>\forall\,f\in\mathrm{FinFunc}(C,K)\;\bigl(\sum_{c\in C}f(c)\,c=0\,\Rightarrow\,f=0\bigr)</math>. Базис — независимое и порождающее подмножество.
 
<ul><li><math>C</math> — независимое подмножество в <math>V</math>: <math>\forall\,f\in\mathrm{FinFunc}(C,K)\;\bigl(\sum_{c\in C}f(c)\,c=0\,\Rightarrow\,f=0\bigr)</math>. Базис — независимое и порождающее подмножество.
 
<li>Стандартные базисы пространств <math>K^n</math>, <math>K_n</math> и <math>\mathrm{Mat}(p,n,K)</math>: <math>\{\underline e_i\mid i\in\{1,\ldots,n\}\}</math>, <math>\{\underline e^j\mid j\in\{1,\ldots,n\}\}</math> и <math>\{\underline e_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.
 
<li>Стандартные базисы пространств <math>K^n</math>, <math>K_n</math> и <math>\mathrm{Mat}(p,n,K)</math>: <math>\{\underline e_i\mid i\in\{1,\ldots,n\}\}</math>, <math>\{\underline e^j\mid j\in\{1,\ldots,n\}\}</math> и <math>\{\underline e_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.
<li><u>Теорема о свойствах базиса.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>B\subseteq V</math>; тогда следующие условия эквивалентны:<br>(1) <math>B</math> — базис пространства <math>V</math>;<br>(2) отображение <math>\Biggl(\!\begin{align}\,\mathrm{FinFunc}(B,K)&\to V\\f&\mapsto\sum_{b\in B}f(b)\,b\end{align}\!\Biggr)</math> — изоморфизм векторных пространств;<br>(3) для любого вектора <math>v\in V</math> существует единственная такая функция <math>f\in\mathrm{FinFunc}(B,K)</math>, что <math>v=\sum_{b\in B}f(b)\,b</math>;<br>(4) <math>B</math> — независимое подмножество в <math>V</math> и для любого вектора <math>v\in V\!\setminus\!B</math> множество <math>B\cup\{v\}</math> не является независимым подмножеством в <math>V</math><br>(то есть <math>B</math> — максимальное независимое подмножество в <math>V</math>);<br>(5) <math>B</math> — порождающее подмножество в <math>V</math> и для любого вектора <math>b\in B</math> множество <math>B\!\setminus\!\{b\}</math> не является порождающим подмножеством в <math>V</math><br>(то есть <math>B</math> — минимальное порождающее подмножество в <math>V</math>).</i>
+
<li><u>Теорема о свойствах базиса.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>B\subseteq V</math>; тогда следующие условия эквивалентны:<br>(у1) <math>B</math> — базис пространства <math>V</math>;<br>(у2) отображение <math>\Biggl(\!\begin{align}\,\mathrm{FinFunc}(B,K)&\to V\\f&\mapsto\sum_{b\in B}f(b)\,b\end{align}\!\Biggr)</math> — изоморфизм векторных пространств;<br>(у3) для любого вектора <math>v\in V</math> существует единственная такая функция <math>f\in\mathrm{FinFunc}(B,K)</math>, что <math>v=\sum_{b\in B}f(b)\,b</math>;<br>(у4) <math>B</math> — независимое подмножество в <math>V</math> и для любого вектора <math>v\in V\!\setminus\!B</math> множество <math>B\cup\{v\}</math> не является независимым подмножеством в <math>V</math><br>(то есть <math>B</math> — максимальное независимое подмножество в <math>V</math>);<br>(у5) <math>B</math> — порождающее подмножество в <math>V</math> и для любого вектора <math>b\in B</math> множество <math>B\!\setminus\!\{b\}</math> не является порождающим подмножеством в <math>V</math><br>(то есть <math>B</math> — минимальное порождающее подмножество в <math>V</math>).</i>
 +
<li><u>Теорема о порядках независимых и порождающих подмножеств.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над полем <math>K</math>, <math>C,D\subseteq V</math> и <math>|D|<\infty</math>; тогда<br>(1) если <math>C</math> — независимое подмножество в <math>V</math> и <math>C\subseteq\langle D\rangle</math>, то <math>|C|\le|D|</math>;<br>(2) если <math>C</math> и <math>D</math> — базисы пространства <math>V</math>, то <math>|C|=|D|</math>.</i>
 +
<li><u>Теорема о построении базиса.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>C,D\subseteq V</math> и <math>|D|<\infty</math>, а также в пространстве <math>V</math><br>существует конечное порождающее подмножество; тогда<br>(1) если <math>C</math> — независимое подмн.-во в <math>V</math>, то существует такой базис <math>B</math> пространства <math>V</math>, что <math>C\subseteq B</math> (то есть <math>C</math> можно дополнить до базиса);<br>(2) если <math>D</math> — порождающее подмн.-во в <math>V</math>, то существует такой базис <math>B</math> пространства <math>V</math>, что <math>B\subseteq D</math> (то есть из <math>D</math> можно выделить базис);<br>(3) в пространстве <math>V</math> существует базис.</i>
 +
<li>Размерность <math>\dim V</math> пространства <math>V</math>: порядок (мощность) базиса. Примеры: <math>\dim K^n\!=\dim K_n\!=n</math>, <math>\dim\mathrm{Mat}(p,n,K)=n\,p</math>, <math>\dim K[x]=\infty</math>.
  
 +
<li><u>Теорема о свойствах размерности.</u> <i><math>V\cong Y\,\Leftrightarrow\,\dim V=\dim Y</math>; пусть <math>U\le V</math>, <math>\dim U=\dim V<\infty</math>; тогда <math>U=V</math>.</i></ul>
  
<li>Отступление о свойствах базиса. Утверждение: <math>V\cong Y\,\Leftrightarrow\,\dim V=\dim Y</math>. Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U=\dim V<\infty</math>; тогда <math>U=V</math></i>.</ul>
+
<!--<h5>2.1.3&nbsp; Координат векторов, ковекторов и линейных операторов</h5>
 
+
<!--<h5>2.1.3&nbsp; Столбцы координат векторов и матрицы гомоморфизмов и преобразования координат при замене базиса</h5>
+
 
<ul><li>Упорядоченные базисы. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств <math>\biggl(\!\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}\!\biggr)</math>.
 
<ul><li>Упорядоченные базисы. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств <math>\biggl(\!\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}\!\biggr)</math>.
 
<li>Матрица гомоморфизма: <math>(a_e^h)_j=a(e_j)^h</math>. Утверждение: <i><math>a(e)=h\cdot a_e^h</math> и <math>\forall\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math></i>. Утверждение: <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.
 
<li>Матрица гомоморфизма: <math>(a_e^h)_j=a(e_j)^h</math>. Утверждение: <i><math>a(e)=h\cdot a_e^h</math> и <math>\forall\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math></i>. Утверждение: <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.
Строка 31: Строка 32:
 
<li>Преобразование координат гомоморфизма: <math>a_\tilde e^\tilde h=\mathrm c_h^\tilde h\cdot a_e^h\cdot\mathrm c_\tilde e^e</math>. Покомпонентная запись (если <math>a</math> — эндоморфизм): <math>a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</ul>
 
<li>Преобразование координат гомоморфизма: <math>a_\tilde e^\tilde h=\mathrm c_h^\tilde h\cdot a_e^h\cdot\mathrm c_\tilde e^e</math>. Покомпонентная запись (если <math>a</math> — эндоморфизм): <math>a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</ul>
  
<h5>2.1.4&nbsp; Факторпространства и прямая сумма векторных пространств</h5>
+
<h5>2.1.4&nbsp; Факторпространства, прямая сумма векторных пространств, двойственное пространство</h5>
<ul><li>Факторпространство: <math>V/U</math>. Утверждение: <i>пусть <math>U\le V</math>, <math>A</math> — базис в <math>U</math>, <math>B</math> — базис в <math>V</math>, <math>A\subseteq B</math>; тогда <math>\{b+U\mid b\in B\setminus A\}</math> — базис в <math>V/U</math></i>.
+
<ul><li>Факторпростр.-во: <math>V/U</math> с фактороперациями (<math>U\le V</math>). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: <math>K^n\!/\langle\underline e_i\rangle\cong K^{n-1}</math>.
<li>Прямая сумма векторных пространств: <math>U\oplus W</math>. Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
+
<p><u>Теорема о гомоморфизме.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>; тогда <math>V/\,\mathrm{Ker}\,a\cong\mathrm{Im}\,a</math>.</i></p>
<p><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>;<br>обозначим через <math>\mathrm{add}_{U,W}</math> отображение <math>\biggl(\!\begin{align}U\oplus W&\to V\\(u,w)&\mapsto u+w\end{align}\!\biggr)</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>;<br>(3) если <math>\dim V<\infty</math>, то <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;\dim U+\dim W=\dim V</math>;<br>(4) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана).</i></p>
+
<li>Пусть <math>U\le V</math>, <math>A</math> — базис в <math>U</math>, <math>B</math> — базис в <math>V</math>, <math>A\subseteq B</math>; тогда <math>\{b+U\mid b\in B\setminus A\}</math> — базис в <math>V/U</math>. Базис прямой суммы. Внутренняя прямая сумма.
 +
<li>Прямая сумма <math>U\oplus W</math>: <math>U\times W</math> с покомпонентными операциями. Обобщение (<math>I</math> — мн.-во): <math>\bigoplus_{i\in I}V_i=\{f\in\mathrm{FinFunc}(I,\bigcup_{i\in I}V_i)\mid\forall\,i\in I\;\bigl(f(i)\in V_i\bigr)\}</math>.
 +
<li><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>;<br>обозначим через <math>\mathrm{add}_{U,W}</math> отображение <math>\biggl(\!\begin{align}U\oplus W&\to V\\(u,w)&\mapsto u+w\end{align}\!\biggr)</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>;<br>(3) если <math>\dim V<\infty</math>, то <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;\dim U+\dim W=\dim V</math>;<br>(4) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана).</i>
 
<li>Подпространство, инвариантное относительно эндоморфизма: <math>a(U)\le U</math>. Матрица эндоморфизма, имеющего инвариантное подпространство.
 
<li>Подпространство, инвариантное относительно эндоморфизма: <math>a(U)\le U</math>. Матрица эндоморфизма, имеющего инвариантное подпространство.
<li>Матрица эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.</ul>
+
<li>Матрица эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
 
+
<li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j(v)=(v^e)^j</math>. Утверждение: <math>\lambda=\!\sum_{j=1}^{\dim V}\!\lambda(e_j)e^j</math>. Столбец <math>e^*</math>.
<h5>2.1.5&nbsp; Двойственное пространство</h5>
+
<ul><li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j(v)=(v^e)^j</math>. Утверждение: <math>\lambda=\!\sum_{j=1}^{\dim V}\!\lambda(e_j)e^j</math>. Столбец <math>e^*</math>.
+
 
<li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>.
 
<li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>.
 
<li>Отождествление пространств <math>V</math> и <math>V^{**}</math> в случае конечномерного пространства <math>V</math> при помощи изоморфизма <math>\,v\mapsto\!\biggl(\!\begin{align}V^*\!&\to K\\\lambda&\mapsto\lambda(v)\end{align}\!\biggr)</math>.
 
<li>Отождествление пространств <math>V</math> и <math>V^{**}</math> в случае конечномерного пространства <math>V</math> при помощи изоморфизма <math>\,v\mapsto\!\biggl(\!\begin{align}V^*\!&\to K\\\lambda&\mapsto\lambda(v)\end{align}\!\biggr)</math>.
 
<li>Сводная таблица о координатах. (В таблице <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e,\tilde e\in\mathrm{OB}(V)</math>.)</ul>
 
<li>Сводная таблица о координатах. (В таблице <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e,\tilde e\in\mathrm{OB}(V)</math>.)</ul>
 +
 
<p><table border cellpadding="3" cellspacing="0">
 
<p><table border cellpadding="3" cellspacing="0">
 
<tr><th>Инвариантный объект</th><th>Координаты<br>относительно базиса</th><th>Преобразование координат<br>при замене базиса</th><th>Пример использования<br>в геометрии и физике</th></tr>
 
<tr><th>Инвариантный объект</th><th>Координаты<br>относительно базиса</th><th>Преобразование координат<br>при замене базиса</th><th>Пример использования<br>в геометрии и физике</th></tr>
Строка 77: Строка 79:
 
<li>Утверждение: <math>\mathrm{rk}(a)\le\min\{\dim V,\dim Y\}</math>. Утверждение: <i><math>a\in\mathrm{Inj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim V</math> и <math>a\in\mathrm{Surj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim Y</math></i>.
 
<li>Утверждение: <math>\mathrm{rk}(a)\le\min\{\dim V,\dim Y\}</math>. Утверждение: <i><math>a\in\mathrm{Inj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim V</math> и <math>a\in\mathrm{Surj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim Y</math></i>.
 
<li><u>Теорема о свойствах ранга.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда<br>(1) для любых матриц <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math> выполнено <math>\mathrm{rk}(g\cdot a\cdot g')=\mathrm{rk}(a)</math>;<br>(2) существуют такие матрицы <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math>, что <math>g\cdot a\cdot g'=\mathrm{se}_1^1+\mathrm{se}_2^2+\ldots+\mathrm{se}_{\mathrm{rk}(a)}^{\mathrm{rk}(a)}</math>;<br>(3) <math>\mathrm{rk}(a^\mathtt T)=\dim\,\langle a^1,\ldots,a^p\rangle</math> и <math>\,\mathrm{rk}(a)=\mathrm{rk}(a^\mathtt T)</math> (то есть ранг по столбцам равен рангу по строкам).</i>
 
<li><u>Теорема о свойствах ранга.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда<br>(1) для любых матриц <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math> выполнено <math>\mathrm{rk}(g\cdot a\cdot g')=\mathrm{rk}(a)</math>;<br>(2) существуют такие матрицы <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math>, что <math>g\cdot a\cdot g'=\mathrm{se}_1^1+\mathrm{se}_2^2+\ldots+\mathrm{se}_{\mathrm{rk}(a)}^{\mathrm{rk}(a)}</math>;<br>(3) <math>\mathrm{rk}(a^\mathtt T)=\dim\,\langle a^1,\ldots,a^p\rangle</math> и <math>\,\mathrm{rk}(a)=\mathrm{rk}(a^\mathtt T)</math> (то есть ранг по столбцам равен рангу по строкам).</i>
<li>Матричная запись систем. Однородные системы. Утверждение: <i>пусть <math>a\cdot v_0=y</math>; тогда <math>\{v\in K^n\mid a\cdot v=y\}=v_0+\{v\in K^n\mid a\cdot v=0\}</math></i>.
 
 
<li><u>Теорема Кронекера–Капелли.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,K)</math> и <math>y\in K^p</math>; тогда <math>\exists\,v\in K^n\;\bigl(a\cdot v=y\bigr)\,\Leftrightarrow\,\mathrm{rk}(a)=\mathrm{rk}((a\;\,y))</math>.</i>
 
<li><u>Теорема Кронекера–Капелли.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,K)</math> и <math>y\in K^p</math>; тогда <math>\exists\,v\in K^n\;\bigl(a\cdot v=y\bigr)\,\Leftrightarrow\,\mathrm{rk}(a)=\mathrm{rk}((a\;\,y))</math>.</i>
 
<li>Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства <math>\{v\in K^n\mid a\cdot v=0\}</math>.</ul>-->
 
<li>Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства <math>\{v\in K^n\mid a\cdot v=0\}</math>.</ul>-->

Версия 05:20, 5 января 2017

2  Линейная алгебра

2.1  Векторные пространства

2.1.1  Определения и конструкции, связанные с векторными пространствами
  • Векторное пространство над полем — абелева группа с умножением на скаляры из , являющимся действием эндоморфизмами по сложению.
  • Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
  • Гомоморфизмы векторных пространств (линейные операторы): — векторное пространство. Кольцо , группа .
  • Подпространство: . Подпростр.-во, порожд. мн.-вом : .
  • Утверждение: . Линейная комбинация элементов мн.-ва : .
  • Ядро и образ линейного оператора : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма.

    Теорема о слоях и ядре гомоморфизма. Пусть — поле, — векторные пространства над полем и ; тогда
    (1) для любых и выполнено (и, значит, );
    (2) , если и только если .

  • Матричная запись системы из линейных урав.-й от переменных: , где , , . Однородная система: .
  • Утверждение: пусть ; тогда . Линейные дифференц. уравнения и системы уравнений.
2.1.2  Базисы и размерность векторного пространства
  • — независимое подмножество в : . Базис — независимое и порождающее подмножество.
  • Стандартные базисы пространств , и : , и .
  • Теорема о свойствах базиса. Пусть — поле, — векторное пространство над полем и ; тогда следующие условия эквивалентны:
    (у1) — базис пространства ;
    (у2) отображение — изоморфизм векторных пространств;
    (у3) для любого вектора существует единственная такая функция , что ;
    (у4) — независимое подмножество в и для любого вектора множество не является независимым подмножеством в
    (то есть — максимальное независимое подмножество в );
    (у5) — порождающее подмножество в и для любого вектора множество не является порождающим подмножеством в
    (то есть — минимальное порождающее подмножество в ).
  • Теорема о порядках независимых и порождающих подмножеств. Пусть — поле, — вект. пр.-во над полем , и ; тогда
    (1) если — независимое подмножество в и , то ;
    (2) если и — базисы пространства , то .
  • Теорема о построении базиса. Пусть — поле, — векторное пространство над полем , и , а также в пространстве
    существует конечное порождающее подмножество; тогда
    (1) если — независимое подмн.-во в , то существует такой базис пространства , что (то есть можно дополнить до базиса);
    (2) если — порождающее подмн.-во в , то существует такой базис пространства , что (то есть из можно выделить базис);
    (3) в пространстве существует базис.
  • Размерность пространства : порядок (мощность) базиса. Примеры: , , .
  • Теорема о свойствах размерности. ; пусть , ; тогда .