Test page — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 18: Строка 18:
 
<h6>А вот это - заголовок через HTML-тег</h6>
 
<h6>А вот это - заголовок через HTML-тег</h6>
  
== Математика ==
+
== Математика (формулы скомпилированы в 2016-м и 2017-м годах) ==
 +
<h5>3.3&nbsp; Поле комплексных чисел</h5>
 +
<ul><li>Кольцо комплексных чисел: <math>\mathbb C=\{\alpha+\beta\,\mathrm i\mid\alpha,\beta\in\mathbb R\}</math>, где <math>\mathrm i^2=-1</math>. Утверждение: <math>\mathbb C\cong\mathbb R[x]/(x^2+1)</math>. Комплексные числа как точки плоскости <math>\mathbb R^2</math>.
 +
<li>Вещественная и мнимая части: <math>\mathrm{Re}(\alpha+\beta\,\mathrm i)=\alpha</math> и <math>\mathrm{Im}(\alpha+\beta\,\mathrm i)=\beta</math>. Сопряжение: <math>\overline a=\mathrm{Re}(a)-\mathrm{Im}(a)\,\mathrm i</math>. Модуль: <math>|a|=\!\sqrt{\mathrm{Re}(a)^2+\mathrm{Im}(a)^2}</math>.
 +
<li><u>Теорема о свойствах комплексных чисел.</u><br><i>(1) Для любых <math>a\in\mathbb C</math> выполнено <math>a\,\overline a=|a|^2</math> и, если <math>a\ne0</math>, то <math>a^{-1}\!=\!\frac\overline a{|a|^2}</math> (и, значит, <math>\mathbb C</math> — поле).<br>(2) Для любых <math>a,b\in\mathbb C</math> выполнено <math>\overline{a+b}=\overline a+\overline b</math> и <math>\overline{a\,b}=\overline a\,\overline b</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C&\to\mathbb C\\a&\mapsto\overline a\end{align}\!\biggr)</math> — автоморфизм поля <math>\,\mathbb C</math>).<br>(3) Для любых <math>a,b\in\mathbb C</math> выполнено <math>|a\,b|=|a|\,|b|</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C^\times\!\!&\to\mathbb R_{>0}\!\\a&\mapsto|a|\end{align}\!\biggr)</math> — гомоморфизм групп).</i>
 +
<li>Группа <math>\mathrm S^1</math>: <math>\mathrm S^1\!=\{g\in\mathbb C\mid|g|=1\}</math>. Утверждение: <math>\mathbb C^\times\!\cong\mathbb R_{>0}\!\times\mathrm S^1</math>. Экспонента от компл. числа <math>a</math>: <math>\mathrm e^a\!=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Теорема о свойствах экспоненты.
 +
<p><u>Теорема о свойствах экспоненты.</u><br><i>(1) Для любых <math>a,b\in\mathbb C</math> выполнено <math>\mathrm e^{a+b}\!=\mathrm e^a\!\cdot\mathrm e^b</math>, а также <math>\mathrm e^0\!=1</math> и <math>\mathrm e^{-a}\!=(\mathrm e^a)^{-1}</math>.<br>(2) Для любых <math>\varphi\in\mathbb R</math> выполнено <math>\mathrm e^{\varphi\,\mathrm i}\!=\cos\varphi+\sin\varphi\;\mathrm i</math> (и, значит, <math>\mathrm S^1\!=\{\mathrm e^{\varphi\,\mathrm i}\!\mid\varphi\in[0;2\pi)\}</math> и <math>\,\mathrm S^1\!\cong\mathbb R^+\!/2\pi\,\mathbb Z</math>).</i></p></ul>
  
<ul><li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{e_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.
+
== Математика (формулы скомпилированы 16.01.2018) ==
<li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{\mathbf e_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.
+
<h5>3.3&nbsp; Поле комплексных чисел</h5>
<li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{\epsilon_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.
+
<ul><li>Кольцо комплексных чисел: <math>\mathbb C=\{\alpha+\beta\,\mathrm i\mid\alpha,\beta\in\mathbb R\}{}</math>, где <math>\mathrm i^2=-1{}</math>. Утверждение: <math>\mathbb C\cong\mathbb R[x]/(x^2+1){}</math>. Комплексные числа как точки плоскости <math>\mathbb R^2{}</math>.
<li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{\boldsymbol\epsilon_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.
+
<li>Вещественная и мнимая части: <math>\mathrm{Re}(\alpha+\beta\,\mathrm i)=\alpha{}</math> и <math>\mathrm{Im}(\alpha+\beta\,\mathrm i)=\beta{}</math>. Сопряжение: <math>\overline a=\mathrm{Re}(a)-\mathrm{Im}(a)\,\mathrm i{}</math>. Модуль: <math>|a|=\!\sqrt{\mathrm{Re}(a)^2+\mathrm{Im}(a)^2}{}</math>.
 
+
<li><u>Теорема о свойствах комплексных чисел.</u><br><i>(1) Для любых <math>a\in\mathbb C{}</math> выполнено <math>a\,\overline a=|a|^2{}</math> и, если <math>a\ne0{}</math>, то <math>a^{-1}\!=\!\frac{\overline a}{|a|^2}</math> (и, значит, <math>\mathbb C{}</math> — поле).<br>(2) Для любых <math>a,b\in\mathbb C{}</math> выполнено <math>\overline{a+b}=\overline a+\overline b{}</math> и <math>\overline{a\,b}=\overline a\,\overline b{}</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C&\to\mathbb C\\a&\mapsto\overline a\end{align}\!\biggr){}</math> — автоморфизм поля <math>\,\mathbb C{}</math>).<br>(3) Для любых <math>a,b\in\mathbb C{}</math> выполнено <math>|a\,b|=|a|\,|b|{}</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C^\times\!\!&\to\mathbb R_{>0}\!\\a&\mapsto|a|\end{align}\!\biggr){}</math> — гомоморфизм групп).</i>
<li>Стандартный базис пространства <math>K^p</math>: <math>\{e_i\mid i\in\{1,\ldots,p\}\}</math>. Стандартный базис пространства <math>{}^n\!K</math>: <math>\{e^j\mid j\in\{1,\ldots,n\}\}</math>.
+
<li>Группа <math>\mathrm S^1{}</math>: <math>\mathrm S^1\!=\{g\in\mathbb C\mid|g|=1\}{}</math>. Утверждение: <math>\mathbb C^\times\!\cong\mathbb R_{>0}\!\times\mathrm S^1{}</math>. Экспонента от компл. числа <math>a{}</math>: <math>\mathrm e^a\!=\sum_{k=0}^\infty\frac1{k!}\,a^k{}</math>. Теорема о свойствах экспоненты.
<li>Стандартный базис пространства <math>K^p</math>: <math>\{\mathbf e_i\mid i\in\{1,\ldots,p\}\}</math>. Стандартный базис пространства <math>{}^n\!K</math>: <math>\{\mathbf e^j\mid j\in\{1,\ldots,n\}\}</math>.
+
<p><u>Теорема о свойствах экспоненты.</u><br><i>(1) Для любых <math>a,b\in\mathbb C{}</math> выполнено <math>\mathrm e^{a+b}\!=\mathrm e^a\!\cdot\mathrm e^b{}</math>, а также <math>\mathrm e^0\!=1{}</math> и <math>\mathrm e^{-a}\!=(\mathrm e^a)^{-1}{}</math>.<br>(2) Для любых <math>\varphi\in\mathbb R{}</math> выполнено <math>\mathrm e^{\varphi\,\mathrm i}\!=\cos\varphi+\sin\varphi\;\mathrm i{}</math> (и, значит, <math>\mathrm S^1\!=\{\mathrm e^{\varphi\,\mathrm i}\!\mid\varphi\in[0;2\pi)\}{}</math> и <math>\,\mathrm S^1\!\cong\mathbb R^+\!/2\pi\,\mathbb Z{}</math>).</i></p></ul>
<li>Стандартный базис пространства <math>K^p</math>: <math>\{\epsilon_i\mid i\in\{1,\ldots,p\}\}</math>. Стандартный базис пространства <math>{}^n\!K</math>: <math>\{\epsilon^j\mid j\in\{1,\ldots,n\}\}</math>.
+
<li>Стандартный базис пространства <math>K^p</math>: <math>\{\boldsymbol\epsilon_i\mid i\in\{1,\ldots,p\}\}</math>. Стандартный базис пространства <math>{}^n\!K</math>: <math>\{\boldsymbol\epsilon^j\mid j\in\{1,\ldots,n\}\}</math>.
+
 
+
<li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,e_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)e_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
+
<li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\mathbf e_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\mathbf e_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
+
<li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\epsilon_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\epsilon_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
+
<li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\boldsymbol\epsilon_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\boldsymbol\epsilon_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
+
 
+
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,e_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)e_i^i)\cdot a</math>.
+
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,\mathbf e_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)\mathbf e_i^i)\cdot a</math>.
+
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,\epsilon_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)\epsilon_i^i)\cdot a</math>.
+
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,\boldsymbol\epsilon_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)\boldsymbol\epsilon_i^i)\cdot a</math>.
+
 
+
<li>Элементарные преобразования над столбцами первого типа <math>a\mapsto a\cdot(\mathrm{id}_n+c\,e_l^j)</math> и второго типа <math>a\mapsto a\cdot(\mathrm{id}_n+(c-1)e_j^j)</math>.
+
<li>Элементарные преобразования над столбцами первого типа <math>a\mapsto a\cdot(\mathrm{id}_n+c\,\mathbf e_l^j)</math> и второго типа <math>a\mapsto a\cdot(\mathrm{id}_n+(c-1)\mathbf e_j^j)</math>.
+
<li>Элементарные преобразования над столбцами первого типа <math>a\mapsto a\cdot(\mathrm{id}_n+c\,\epsilon_l^j)</math> и второго типа <math>a\mapsto a\cdot(\mathrm{id}_n+(c-1)\epsilon_j^j)</math>.
+
<li>Элементарные преобразования над столбцами первого типа <math>a\mapsto a\cdot(\mathrm{id}_n+c\,\boldsymbol\epsilon_l^j)</math> и второго типа <math>a\mapsto a\cdot(\mathrm{id}_n+(c-1)\boldsymbol\epsilon_j^j)</math>.
+
 
+
<li><i>(2) существуют такие матрицы <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math>, что <math>g\cdot a\cdot g'=e_1^1+e_2^2+\ldots+e_{\mathrm{rk}(a)}^{\mathrm{rk}(a)}</math>;<br>(2) существуют такие матрицы <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math>, что <math>g\cdot a\cdot g'=\mathbf e_1^1+\mathbf e_2^2+\ldots+\mathbf e_{\mathrm{rk}(a)}^{\mathrm{rk}(a)}</math>;<br>(2) существуют такие матрицы <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math>, что <math>g\cdot a\cdot g'=\epsilon_1^1+\epsilon_2^2+\ldots+\epsilon_{\mathrm{rk}(a)}^{\mathrm{rk}(a)}</math>;<br>(2) существуют такие матрицы <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math>, что <math>g\cdot a\cdot g'=\boldsymbol\epsilon_1^1+\boldsymbol\epsilon_2^2+\ldots+\boldsymbol\epsilon_{\mathrm{rk}(a)}^{\mathrm{rk}(a)}</math>;</i></ul>
+
 
+
<p><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>;<br>обозначим через <math>\mathrm{add}_{U,W}</math> отображение <math>\biggl(\!\begin{align}U\oplus W&\to V\\(u,w)&\mapsto u+w\end{align}\!\biggr)</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана);<br>(3) <math>\mathrm{add}_{U,W}\in\mathrm{Isom}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>;<br>(3') если <math>\dim V<\infty</math>, то <math>\mathrm{add}_{U,W}\in\mathrm{Isom}(U\oplus W,V)</math><math>\;\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;\dim U+\dim W=\dim V</math>.<br>(3') если <math>\dim V<\infty</math>, то <math>\mathrm{add}_{U,W}\in\mathrm{Isom}(U\oplus W,V)</math><math>\,\Leftrightarrow\,</math><math>U\cap W=\{0\}\;\land\;\dim U+\dim W=\dim V</math>.</i></p>
+

Версия 03:00, 16 января 2018

Это песочница. Тут можно тестировать разметку.

Тестирование (h2)

Вот тут будет ненумерованный список:

  • Первый элемент
  • Второй элемент

А вот тут - нумерованный:

  1. Первый элемент
  2. Второй элемент

Заголовок (h3)

И еще один подзаголовок (h4)

И еще один подподзаголовок (h5)
Подподподзаголовок (h6)
= Подподподподзаголовок уже не работает =
А вот это - заголовок через HTML-тег

Математика (формулы скомпилированы в 2016-м и 2017-м годах)

3.3  Поле комплексных чисел
  • Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
  • Вещественная и мнимая части: и . Сопряжение: . Модуль: .
  • Теорема о свойствах комплексных чисел.
    (1) Для любых выполнено и, если , то (и, значит, — поле).
    (2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Группа : . Утверждение: . Экспонента от компл. числа : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Для любых выполнено , а также и .
    (2) Для любых выполнено (и, значит, и ).

Математика (формулы скомпилированы 16.01.2018)

3.3  Поле комплексных чисел
  • Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
  • Вещественная и мнимая части: и . Сопряжение: . Модуль: .
  • Теорема о свойствах комплексных чисел.
    (1) Для любых выполнено и, если , то (и, значит, — поле).
    (2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
    (3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Группа : . Утверждение: . Экспонента от компл. числа : . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты.
    (1) Для любых выполнено , а также и .
    (2) Для любых выполнено (и, значит, и ).