Машинное обучение 2017 — различия между версиями
Ekaterina (обсуждение | вклад) (→Комментарии к лекциям) |
Ekaterina (обсуждение | вклад) (→Лекции) |
||
Строка 2: | Строка 2: | ||
== Лекции == | == Лекции == | ||
− | 1. | + | 1. [http://mit.spbau.ru/sewiki/images/e/ef/ML17-Lecture1.pdf 15 февраля, "Введение"]<br/> |
− | 2. | + | 2. [http://mit.spbau.ru/sewiki/images/9/98/ML17-Lecture2.pdf 22 февраля, "Метрические классификаторы"] <br/> |
− | 3. | + | 3. [http://mit.spbau.ru/sewiki/images/a/a8/ML17-Lecture3.pdf 1 марта, "Кластеризация"]<br/> |
− | 4. | + | 4. [http://mit.spbau.ru/sewiki/images/c/c4/ML17-Lecture4.pdf 15 марта, "Деревья принятия решений"] <br/> |
− | 5. | + | 5. [http://mit.spbau.ru/sewiki/images/3/33/ML17-Lecture5.pdf 22 марта, "Байесовские методы классификации"] <br/> |
− | 6. | + | 6. [http://mit.spbau.ru/sewiki/images/1/13/ML17-Lecture6.pdf 29 марта, "Перцептрон"] <br/> |
− | 7. | + | 7. [http://mit.spbau.ru/sewiki/images/1/19/ML17-Lecture7.pdf 5 апреля, "Способность к обобщению"] <br/> |
− | 8. | + | 8. [http://mit.spbau.ru/sewiki/images/3/39/ML17-Lecture8.pdf 12 апреля, "Нейронные сети"] <br/> |
− | 9. | + | 9. [http://mit.spbau.ru/sewiki/images/8/83/ML17-Lecture9.pdf 19 апреля, "Метод опорных векторов"] <br/> |
10. [http://mit.spbau.ru/sewiki/images/9/99/ML17-Lecture10.pdf 26 апреля, "Линейная регрессия"] <br/> | 10. [http://mit.spbau.ru/sewiki/images/9/99/ML17-Lecture10.pdf 26 апреля, "Линейная регрессия"] <br/> | ||
− | 11. 3 мая, "Анализ смещения и разброса" <br/> | + | 11. [http://mit.spbau.ru/sewiki/images/2/2e/ML17-Lecture11.pdf 3 мая, "Анализ смещения и разброса"] <br/> |
12. 10 мая, "Методы восстановления регрессии" <br/> | 12. 10 мая, "Методы восстановления регрессии" <br/> | ||
13. 17 мая, "Ансамбли" <br/> | 13. 17 мая, "Ансамбли" <br/> |
Версия 19:47, 26 апреля 2017
Лекции — Екатерина Тузова (kt@jetbrains.com)
Содержание
Лекции
1. 15 февраля, "Введение"
2. 22 февраля, "Метрические классификаторы"
3. 1 марта, "Кластеризация"
4. 15 марта, "Деревья принятия решений"
5. 22 марта, "Байесовские методы классификации"
6. 29 марта, "Перцептрон"
7. 5 апреля, "Способность к обобщению"
8. 12 апреля, "Нейронные сети"
9. 19 апреля, "Метод опорных векторов"
10. 26 апреля, "Линейная регрессия"
11. 3 мая, "Анализ смещения и разброса"
12. 10 мая, "Методы восстановления регрессии"
13. 17 мая, "Ансамбли"
Комментарии к лекциям
Лекция 10.
В лекции использовано "экономное"(усечённое) сингулярное разложение
Размер матрицы V (l x n). Для неквадратных матриц условие ортогональности раздельное по строкам и столбцам. Таким образом из условия V^T V = I не следует что V V^T = I (см здесь)
Домашние задания.
Адрес, на который надо присылать решения -- machine.teaching@gmail.com.
В теме письма должно быть написано "Домашняя работа N Иванов", где вместо Иванов надо поставить свою фамилию, а вместо N -- номер домашней работы.
1. Соседи и вино
Дедлайн (20 баллов): 03.03.17 23:59
Дедлайн (10 баллов): 10.03.17 23:59
Условие — Домашнее задание 1
2. Comic-Con и k-means
Дедлайн (20 баллов): 10.03.17 23:59
Дедлайн (10 баллов): 17.03.17 23:59
Условие — Домашнее задание 2
3. Одеревенеть от страха
Дедлайн (20 баллов): 23.03.17 23:59
Дедлайн (10 баллов): 30.03.17 23:59
Условие — Домашнее задание 3
4. Байес на страже SMS
Дедлайн (20 баллов): 30.03.17 23:59
Дедлайн (10 баллов): 06.04.17 23:59
Условие — Домашнее задание 4
5. Индейцы пима и линейный классификатор
Дедлайн (20 баллов): 13.04.17 23:59
Дедлайн (10 баллов): 20.04.17 23:59
Условие — Домашнее задание 5
6. Каракули и нейросети
Дедлайн (20 баллов): 20.04.17 23:59
Дедлайн (10 баллов): 27.04.17 23:59
Условие — Домашнее задание 6
7. Ядра SVM
Дедлайн (20 баллов): 27.04.17 23:59
Дедлайн (10 баллов): 04.05.17 23:59
Условие — Домашнее задание 7
Летучки в начале лекции.
22 февраля
1 марта
15 марта
22 марта
29 марта
5 апреля
12 апреля
19 апреля
Результаты
12 опросов по 5 баллов в начале лекции.
8 домашних заданий по 20 баллов при сдаче в первую неделю, 10 баллов при сдаче во вторую неделю.
Экзамен 180 баллов
Оценки за курс: 300 баллов -- отлично, 250 баллов -- хорошо, 200 баллов -- удовлетворительно
Дополнительные источники по машинному обучению
- Christopher M. Bishop "Pattern Recognition and Machine Learning"
- G. James, D. Witten, T. Hastie, R. Tibshirani: "An Introduction to Statistical Learning"
- Kevin P. Murphy "Machine Learning: A Probabilistic Perspective"
- Professor Yaser Abu-Mostafa MOOC
- К.В. Воронцов: MOOC, материалы (в т.ч. пособие)
- Andrew Ng http://ml-class.org/
- Примеры реализации алгоритмов на Python: Программируем коллективный разум
- Ullman, Leskovec, Rajaraman "Mining of Massive Datasets"