Алгебра phys 1 февраль–март — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 29: Строка 29:
 
<li>Множество упорядоченных базисов: <math>\mathrm{OB}(V)</math>. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств <math>\biggl(\!\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}\!\biggr)</math>.
 
<li>Множество упорядоченных базисов: <math>\mathrm{OB}(V)</math>. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств <math>\biggl(\!\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}\!\biggr)</math>.
 
<li>Матрица линейн. оператора <math>a</math>: <math>(a_e^h)^\bullet_j=a(e_j)^h</math>. Теорема о матрице линейного оператора. Изоморфизм колец и вект. пр.-в <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{Mat}(n,K)\\a&\mapsto a_e^e\end{align}\!\biggr)</math>.
 
<li>Матрица линейн. оператора <math>a</math>: <math>(a_e^h)^\bullet_j=a(e_j)^h</math>. Теорема о матрице линейного оператора. Изоморфизм колец и вект. пр.-в <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{Mat}(n,K)\\a&\mapsto a_e^e\end{align}\!\biggr)</math>.
<p><u>Теорема о матрице линейного оператора.</u><br><i>(1) Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>p=\dim Y<\infty</math>, <math>e\in\mathrm{OB}(V)</math> и <math>h\in\mathrm{OB}(Y)</math>; тогда<br><math>\forall\,a\in\mathrm{Hom}(V,Y),\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math>, а также отображения <math>\biggl(\!\begin{align}\mathrm{Hom}(V,Y)&\to\mathrm{Mat}(p,n,K)\\a&\mapsto a_e^h\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{Mat}(p,n,K)&\to\mathrm{Hom}(V,Y)\\a&\mapsto\bigl(v\mapsto h\cdot a\cdot v^e\bigr)\!\end{align}\!\biggr)</math><br>суть взаимно обратные изоморфизмы векторных пространств.<br>(2) Пусть <math>K</math> — поле, <math>V,X,Z</math> — векторные пространства над полем <math>K</math>, <math>\dim V,\dim X,\dim Z<\infty</math>, <math>e\in\mathrm{OB}(V)</math>, <math>f\in\mathrm{OB}(X)</math> и <math>g\in\mathrm{OB}(Z)</math>,<br>а также <math>a\in\mathrm{Hom}(V,X)</math> и <math>b\in\mathrm{Hom}(X,Z)</math>; тогда <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.</i></p>
+
<p><u>Теорема о матрице линейного оператора.</u><br><i>(1) Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math>, <math>n=\dim V<\infty</math>, <math>p=\dim Y<\infty</math>, <math>e\in\mathrm{OB}(V)</math> и <math>h\in\mathrm{OB}(Y)</math>; тогда<br><math>\forall\,a\in\mathrm{Hom}(V,Y),\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math>, а также отображения <math>\biggl(\!\begin{align}\mathrm{Hom}(V,Y)&\to\mathrm{Mat}(p,n,K)\\a&\mapsto a_e^h\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{Mat}(p,n,K)&\to\mathrm{Hom}(V,Y)\\a&\mapsto\bigl(v\mapsto h\cdot a\cdot v^e\bigr)\!\end{align}\!\biggr)</math> <br>взаимно обратные изоморфизмы векторных пространств.<br>(2) Пусть <math>K</math> — поле, <math>V,X,Z</math> — векторные пространства над полем <math>K</math>, <math>\dim V,\dim X,\dim Z<\infty</math>, <math>e\in\mathrm{OB}(V)</math>, <math>f\in\mathrm{OB}(X)</math> и <math>g\in\mathrm{OB}(Z)</math>,<br>а также <math>a\in\mathrm{Hom}(V,X)</math> и <math>b\in\mathrm{Hom}(X,Z)</math>; тогда <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.</i></p>
 
<li>Матрицы замены координат и замены базиса (<math>e,\tilde e\in\mathrm{OB}(V)</math>): <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math> и <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Пример: <math>\mathrm c_e^\underline e\!=e</math>. Утверждение: <i><math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e</math>, <math>\mathrm c_e^\tilde e=(\mathrm c_\tilde e^e)^{-1}</math></i>.
 
<li>Матрицы замены координат и замены базиса (<math>e,\tilde e\in\mathrm{OB}(V)</math>): <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math> и <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Пример: <math>\mathrm c_e^\underline e\!=e</math>. Утверждение: <i><math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e</math>, <math>\mathrm c_e^\tilde e=(\mathrm c_\tilde e^e)^{-1}</math></i>.
<li>Преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math>. Преобразование столбца координат вектора: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math>; то же в покомпонентной записи: <math>v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k</math>.
+
<li>Преобразование столбца координат вектора: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math>; то же в покомпонентной записи: <math>v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k</math>. Преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math>.
 
<li>Преобразование матрицы линейного оператора: <math>a_\tilde e^\tilde h=\mathrm c_h^\tilde h\cdot a_e^h\cdot\mathrm c_\tilde e^e</math>; то же в покомпонентной записи (если <math>a\in\mathrm{End}(V)</math>): <math>a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</ul>
 
<li>Преобразование матрицы линейного оператора: <math>a_\tilde e^\tilde h=\mathrm c_h^\tilde h\cdot a_e^h\cdot\mathrm c_\tilde e^e</math>; то же в покомпонентной записи (если <math>a\in\mathrm{End}(V)</math>): <math>a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</ul>
  
Строка 39: Строка 39:
 
<li><u>Теорема о факторпространстве.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>U\le V</math>, <math>A</math> — базис пр.-ва <math>U</math>, <math>B</math> — базис пр.-ва <math>V</math> и <math>A\subseteq B</math>; тогда<br>(1) все классы смежности <math>b+U</math>, где <math>b\in B\!\setminus\!A</math>, попарно различны и вместе образуют базис пространства <math>V/U</math>;<br>(2) если <math>\dim V<\infty</math>, то <math>\dim V/U=\dim V-\dim U</math>;<br>(3) если <math>\dim V<\infty</math>, <math>Y</math> — вект. пр.-во над <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>, то <math>\dim\mathrm{Ker}\,a+\dim\mathrm{Im}\,a=\dim V</math> (это теорема о размерностях ядра и образа).</i>
 
<li><u>Теорема о факторпространстве.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>U\le V</math>, <math>A</math> — базис пр.-ва <math>U</math>, <math>B</math> — базис пр.-ва <math>V</math> и <math>A\subseteq B</math>; тогда<br>(1) все классы смежности <math>b+U</math>, где <math>b\in B\!\setminus\!A</math>, попарно различны и вместе образуют базис пространства <math>V/U</math>;<br>(2) если <math>\dim V<\infty</math>, то <math>\dim V/U=\dim V-\dim U</math>;<br>(3) если <math>\dim V<\infty</math>, <math>Y</math> — вект. пр.-во над <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>, то <math>\dim\mathrm{Ker}\,a+\dim\mathrm{Im}\,a=\dim V</math> (это теорема о размерностях ядра и образа).</i>
 
<li>Прямая сумма <math>U\oplus W</math>: <math>U\times W</math> с покомпонентными операциями. Обобщение (<math>I</math> — мн.-во): <math>\bigoplus_{i\in I}V_i=\{f\in\mathrm{FinFunc}(I,\bigcup_{i\in I}V_i)\mid\forall\,i\in I\;\bigl(f(i)\in V_i\bigr)\}</math>.
 
<li>Прямая сумма <math>U\oplus W</math>: <math>U\times W</math> с покомпонентными операциями. Обобщение (<math>I</math> — мн.-во): <math>\bigoplus_{i\in I}V_i=\{f\in\mathrm{FinFunc}(I,\bigcup_{i\in I}V_i)\mid\forall\,i\in I\;\bigl(f(i)\in V_i\bigr)\}</math>.
 +
<li><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k\le V</math>; обозначим через <math>\mathrm{add}</math><br>отображение <math>\biggl(\!\begin{align}V_1\oplus\ldots\oplus V_k&\to V\\(v_1,\ldots,v_k)&\mapsto v_1+\ldots+v_k\end{align}\!\biggr)</math>; тогда<br>(1) если <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math> и <math>B_1,\ldots,B_k</math> — базисы пространств <math>V_1,\ldots,V_k</math> соответ.-но, то <math>B_1\cup\ldots\cup B_k</math> — базис пространства <math>V</math>;<br>(2) следующие условия эквивалентны: (у1) <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>, (у2) <math>\forall\,v\in V\;\exists!\,v_1\in V_1,\ldots,v_k\in V_k\;\bigl(v=v_1+\ldots+v_k\bigr)</math> и<br>(у3) <math>\forall\,i\in\{1,\ldots,k\}\;\bigl(V_i\cap(V_1+\ldots+V_{i-1}+V_{i+1}+\ldots+V_k)=\{0\}\bigr)\,\land\,V=V_1+\ldots+V_k</math>;<br>(3) если <math>\dim V<\infty</math>, то след. усл.-я эквивалентны: (у1) <math>\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>, (у2) <math>\forall\,v\in V\;\exists!\,v_1\in V_1,\ldots,v_k\in V_k\;\bigl(v=v_1+\ldots+v_k\bigr)</math> и<br>(у3) <math>\forall\,i\in\{1,\ldots,k\}\;\bigl(V_i\cap(V_1+\ldots+V_{i-1}+V_{i+1}+\ldots+V_k)=\{0\}\bigr)\,\land\,\dim V=\dim V_1+\ldots+\dim V_k</math>;<br>(4) если <math>U,W\le V</math> и <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана).</i>
 +
<li>Внутренняя прямая сумма: <math>V=V_1\oplus\ldots\oplus V_k\,\Leftrightarrow\,\mathrm{add}\in\mathrm{Iso}(V_1\oplus\ldots\oplus V_k,V)</math>. Лемма об инвариантном подпространстве и матрице эндоморфизма.
 +
<p><u>Лемма об инвариантном подпространстве и матрице эндоморфизма.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное простр.-во над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math>, <math>U\le V</math> и <math>a(U)\subseteq U</math> (то есть <math>U</math> — <math>a</math>-инвариантное подпространство), а также <math>n'=\dim U</math> и <math>n''=n-n'</math>; тогда<br>(1) существуют такие <math>e\in\mathrm{OB}(V)</math>, <math>a'\in\mathrm{Mat}(n',K)</math>, <math>a''\in\mathrm{Mat}(n'',K)</math> и <math>b\in\mathrm{Mat}(n',n'',K)</math>, что <math>a_e^e=\Bigl(\begin{smallmatrix}a'&b\\0&a''\!\end{smallmatrix}\Bigr)</math>;<br>(2) если <math>W\le V</math>, <math>V=U\oplus W</math> и <math>a(W)\subseteq W</math>, то существуют такие <math>e\in\mathrm{OB}(V)</math>, <math>a'\in\mathrm{Mat}(n',K)</math> и <math>a''\in\mathrm{Mat}(n'',K)</math>, что <math>a_e^e=\Bigl(\begin{smallmatrix}a'&0\\0&a''\!\end{smallmatrix}\Bigr)</math>.</i></p>
 +
<li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j=e_j^*=\bigl(v\mapsto(v^e)^j\bigr)</math>. Столбец <math>e^*\!=\biggl(\begin{smallmatrix}e^1\\\vdots\\e^n\end{smallmatrix}\biggr)</math>. Строка координат ковектора.
 +
<li>Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Изоморфизм <math>\biggl(\!\begin{align}V^*\!&\to K_n\!\\\lambda&\mapsto\lambda_e\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>, а также <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>.
 +
<li>Сопоставление <math>a\mapsto a^*</math>: <math>\biggl(\!\begin{align}*\,\colon\mathrm{Hom}(V,Y)&\to\mathrm{Hom}(Y^*,V^*)\\a&\mapsto\bigl(\xi\mapsto\xi\circ a\bigr)\end{align}\!\biggr)</math>. Утверждение: <i>пусть <math>\dim V<\infty</math>; тогда <math>\biggl(\!\begin{align}V&\to V^{**}\\v&\mapsto\bigl(\lambda\mapsto\lambda(v)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм</i>.</ul>
  
<!--<li><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>;<br>обозначим через <math>\mathrm{add}_{U,W}</math> отображение <math>\biggl(\!\begin{align}U\oplus W&\to V\\(u,w)&\mapsto u+w\end{align}\!\biggr)</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>;<br>(3) если <math>\dim V<\infty</math>, то <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;\dim U+\dim W=\dim V</math>;<br>(4) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана). +Базис прямой суммы. +Внутренняя прямая сумма.</i>
+
<!--<li>Сводная таблица о координатах. (В таблице <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e,\tilde e\in\mathrm{OB}(V)</math>.)
<li>Подпространство, инвариантное относительно эндоморфизма: <math>a(U)\le U</math>. Матрица эндоморфизма, имеющего инвариантное подпространство.
+
<li>Матрица эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
+
<li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j(v)=(v^e)^j</math>. Утверждение: <math>\lambda=\!\sum_{j=1}^{\dim V}\!\lambda(e_j)e^j</math>. Столбец <math>e^*</math>.
+
<li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>.
+
<li>Отождествление пространств <math>V</math> и <math>V^{**}</math> в случае конечномерного пространства <math>V</math> при помощи изоморфизма <math>\,v\mapsto\!\biggl(\!\begin{align}V^*\!&\to K\\\lambda&\mapsto\lambda(v)\end{align}\!\biggr)</math>.
+
<li>Сводная таблица о координатах. (В таблице <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e,\tilde e\in\mathrm{OB}(V)</math>.)</ul>
+
 
+
 
<p><table border cellpadding="3" cellspacing="0">
 
<p><table border cellpadding="3" cellspacing="0">
 
<tr><th>Инвариантный объект</th><th>Координаты<br>относительно базиса</th><th>Преобразование координат<br>при замене базиса</th><th>Пример использования<br>в геометрии и физике</th></tr>
 
<tr><th>Инвариантный объект</th><th>Координаты<br>относительно базиса</th><th>Преобразование координат<br>при замене базиса</th><th>Пример использования<br>в геометрии и физике</th></tr>
Строка 68: Строка 67:
 
<td>дифференциал в неподвижной точке<br>гладкого отображения,<br>действующего из многообразия в себя</td></tr></table></p>
 
<td>дифференциал в неподвижной точке<br>гладкого отображения,<br>действующего из многообразия в себя</td></tr></table></p>
  
<h3>2.2&nbsp; Линейные операторы (часть 1)</h3>
+
<!--<h3>2.2&nbsp; Линейные операторы (часть 1)</h3>
 
<h5>2.2.1&nbsp; Элементарные матрицы и приведение к ступенчатому виду</h5>
 
<h5>2.2.1&nbsp; Элементарные матрицы и приведение к ступенчатому виду</h5>
 
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\mathrm{se}_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\mathrm{se}_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
 
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\mathrm{se}_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\mathrm{se}_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.

Версия 05:05, 6 января 2017

2  Линейная алгебра

2.1  Векторные пространства

2.1.1  Определения и конструкции, связанные с векторными пространствами
  • Векторное пространство над полем — абелева группа с умножением на скаляры из , являющимся действием эндоморфизмами по сложению.
  • Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
  • Гомоморфизмы векторных пространств (линейные операторы): — векторное пространство. Кольцо , группа .
  • Подпространство: . Подпростр.-во, порожд. мн.-вом : .
  • Утверждение: . Линейная комбинация элементов мн.-ва : .
  • Ядро и образ линейного оператора : и . Утверждение: и . Теорема о слоях и ядре линейного оператора.

    Теорема о слоях и ядре линейного оператора. Пусть — поле, — векторные пространства над полем и ; тогда
    (1) для любых и выполнено (и, значит, );
    (2) , если и только если .

  • Матричная запись системы из линейных урав.-й от переменных: , где , , . Однородная система: .
  • Утверждение: пусть ; тогда . Линейные дифференц. уравнения и системы уравнений.
2.1.2  Независимые множества, порождающие множества, базисы
  • — независимое мн.-во: . — порождающее мн.-во: . Базис — независ. порожд. мн.-во.
  • Стандартные базисы пространств , и : , и .
  • Теорема о свойствах базиса. Пусть — поле, — векторное пространство над полем и ; тогда следующие условия эквивалентны:
    (у1) — базис пространства ;
    (у2) отображение — изоморфизм векторных пространств;
    (у3) для любого вектора существует единственная такая функция , что ;
    (у4) — независимое подмножество в и для любого вектора множество не является независимым подмножеством в
    (то есть — максимальное независимое множество);
    (у5) — порождающее подмножество в и для любого вектора множество не является порождающим подмножеством в
    (то есть — минимальное порождающее множество).
  • Теорема об универсальности базиса. Пусть — поле, — векторные пространства над полем и — базис пространства ; тогда
    для любых существует единственный такой линейный оператор , что (и, значит, отображение
    — изоморфизм векторных пространств).
  • Теорема о базисах и линейных операторах. Пусть — поле, — вект. пр.-ва над , — базис пространства и ; тогда
    (1) , если и только если — независимое множество;
    (2) , если и только если — порождающее множество;
    (3) , если и только если — базис пространства .
  • Теорема о порядках независимых и порождающих множеств. Пусть — поле, — вект. простр.-во над полем , и ; тогда
    (1) если — независимое множество и , то ;
    (2) если и — базисы пространства , то .
  • Теорема о построении базиса. Пусть — поле, — векторное пространство над полем , и , а также в пространстве
    существует конечное порождающее подмножество; тогда
    (1) если — независимое множество, то существует такой базис пространства , что (то есть можно дополнить до базиса);
    (2) если — порождающее множество, то существует такой базис пространства , что (то есть из можно выделить базис);
    (3) в пространстве существует базис.
2.1.3  Размерность и координаты
  • Размерность пространства : порядок (мощность) базиса. Примеры: , , .
  • Теорема о свойствах размерности. Пусть — поле, — векторное простр.-во над полем , , — независимое подмножество в ,
    — порождающее подмножество в и ; тогда
    (1) и, если , то — базис пространства ;
    (2) и, если , то — базис пространства ;
    (3) и, если , то .
  • Теорема о размерности и линейных операторах. Пусть — поле, — векторные пространства над полем и ; тогда
    (1) , если и только если ;
    (2) , если и только если ;
    (3) , если и только если ;
    (4) если , то (это принцип Дирихле для линейных операторов).
  • Множество упорядоченных базисов: . Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств .
  • Матрица линейн. оператора : . Теорема о матрице линейного оператора. Изоморфизм колец и вект. пр.-в .

    Теорема о матрице линейного оператора.
    (1) Пусть — поле, — векторные пространства над полем , , , и ; тогда
    , а также отображения и
    взаимно обратные изоморфизмы векторных пространств.
    (2) Пусть — поле, — векторные пространства над полем , , , и ,
    а также и ; тогда .

  • Матрицы замены координат и замены базиса (): и . Пример: . Утверждение: , .
  • Преобразование столбца координат вектора: ; то же в покомпонентной записи: . Преобразование базиса: .
  • Преобразование матрицы линейного оператора: ; то же в покомпонентной записи (если ): .
2.1.4  Факторпространства, прямая сумма векторных пространств, двойственное пространство
  • Факторпростр.-во: с фактороперациями (). Корректность опр.-я факторопераций. Теорема о гомоморфизме. Пример: .

    Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .

  • Теорема о факторпространстве. Пусть — поле, — вект. пр.-во над , , — базис пр.-ва , — базис пр.-ва и ; тогда
    (1) все классы смежности , где , попарно различны и вместе образуют базис пространства ;
    (2) если , то ;
    (3) если , — вект. пр.-во над и , то (это теорема о размерностях ядра и образа).
  • Прямая сумма : с покомпонентными операциями. Обобщение ( — мн.-во): .
  • Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем , и ; обозначим через
    отображение ; тогда
    (1) если и — базисы пространств соответ.-но, то — базис пространства ;
    (2) следующие условия эквивалентны: (у1) , (у2) и
    (у3) ;
    (3) если , то след. усл.-я эквивалентны: (у1) , (у2) и
    (у3) ;
    (4) если и , то (это формула Грассмана).
  • Внутренняя прямая сумма: . Лемма об инвариантном подпространстве и матрице эндоморфизма.

    Лемма об инвариантном подпространстве и матрице эндоморфизма. Пусть — поле, — векторное простр.-во над полем , ,
    , и (то есть -инвариантное подпространство), а также и ; тогда
    (1) существуют такие , , и , что ;
    (2) если , и , то существуют такие , и , что .

  • Двойственное пространство: . Двойственный базис: . Столбец . Строка координат ковектора.
  • Утверждение: . Изоморфизм . Преобразования при замене базиса: и , а также .
  • Сопоставление : . Утверждение: пусть ; тогда — изоморфизм.