MachineLearning 2013 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 1: Строка 1:
Лектор - Степанов Михаил
+
Лектор - Степанов Михаил,
 
Практика - Тяпочкин Константин
 
Практика - Тяпочкин Константин
  
Строка 6: Строка 6:
  
 
== Практические задания ==
 
== Практические задания ==
 
+
Лекции:
 
+
[[Файл:lecture1.pdf]]
 +
[[Файл:lecture1.pdf]]
 +
Домашние задания:
 +
[[Файл:lab1.zip]]
 
== Программа курса ==
 
== Программа курса ==
 
*Методы визуализации и анализа
 
*Методы визуализации и анализа

Версия 13:58, 6 марта 2013

Лектор - Степанов Михаил, Практика - Тяпочкин Константин

Лекции

Слайды к лекции от 20.02, 27.02 Медиа:lecture_stepanov_1_2.pdf. Материал, изложенный в лекции так же доступен [1]

Практические задания

Лекции: Файл:Lecture1.pdf Файл:Lecture1.pdf Домашние задания: Файл:Lab1.zip

Программа курса

  • Методы визуализации и анализа
  • Линейные модели
    • Линейная регрессия
    • Логистическая регрессия
    • Обощенные линейные модели
    • Регуляризация
  • Классификация
    • Наивный байес
    • Деревья принятия решений, случайный лес
    • Нейронные сети и алгоритм обратного распространени¤ ошибок
    • Метод опорных векторов (SVM)
    • AdaBoost
  • Рекомендации по использованию алгоритмов машинного обучения
    • Выбор модели
    • Компромисc смещения-дисперсии (bias-variance trade-off)
    • Кривая обучения
  • Кластеризация
    • Метод к-средних(k-means)
    • EM-алгоритм
    • Иерархические методы
    • Рекомендации по использованию методов кластеризации
  • Методы понижения размерности данных
    • Метод главных компонент (PCA)
    • Многомерное шкалирование
  • Методы поиска аномалий в данных
  • Рекомендательные системы
  • Методы работы с большими объемами данных с использованием MapReduce

Список литературы

  • Christopher M. Bishop, Pattern Recognition and Machine Learning
  • Andrew Ng, Lecture notes, Machine Learning[2]
  • Воронцов К.В., Машинное обучение (курс лекций)[3]


Ссылки