Linear Regression Logistic Regression

M.Stepanov

2 ноября 2012 г.

Linear Regression

Living area (sq. feet)	bedrooms	Price (1000)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540

- Objective is to approximate dataset by some linear function.

$$
h_{\theta}=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}
$$

- More generally for arbitrary dataset we are looking for

$$
h_{\theta}=\sum_{i=0}^{n} \theta_{i} x_{i}=\theta^{t} x
$$

- we assume that $x_{0}=1$ - intercept term

Cost Function and Gradient Descent Algorithm

- Least-squares cost function

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} \rightarrow \min
$$

- Gradient descent algorithm starts with some initial θ and repeatedly performs update

$$
\theta_{j}=\theta_{j}-\alpha \frac{\partial J(\theta)}{\partial \theta_{j}}
$$

- Gradient descent Repeat until convergence \{

$$
\theta_{j}=\theta_{j}-\alpha \sum_{i=1}^{m}\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)}(\text { for every } \mathrm{j})
$$

\}

Stohastic gradient descent

- Stohastic gradient descent

Loop\{
for $\mathrm{i}=1$ to $\mathrm{m}\{$

$$
\theta_{j}=\theta_{j}+\alpha\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)}(\text { for every } \mathrm{j})
$$

\} $\quad 3$

Normal Equations

- Least-squares cost function

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

- In matrix form could be rewrited as

$$
J(\theta)=\frac{1}{2}(X \theta-\bar{y})(X \theta-\bar{y})
$$

- By taken gradient from cost function in the matrix form we get

$$
\theta=\left(X^{t} X\right)^{-1} X^{t} \bar{y}
$$

Probabilistic Interpretation

- Let assume that the target variables and the inputs are related via the equation

$$
y^{(i)}=\theta^{t} x^{(i)}+\epsilon^{(i)}
$$

- $\epsilon^{(i)}$ is an error term that independently and identically distributed according to a Gaussian distribution $\left(\mathcal{N}\left(0, \sigma^{2}\right)\right)$

$$
p\left(\epsilon^{(i)}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(\epsilon^{(i)}\right)^{2}}{2 \sigma^{2}}\right)
$$

- We can rewrite this as a conditional distribution

$$
p\left(y^{(i)} \mid x^{(i)} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta x^{(i)}\right)^{2}}{2 \sigma^{2}}\right)
$$

Probabilistic Interpretation

- To estimate θ lets use likelihood function

$$
L(\theta)=\prod_{i=1}^{m} p\left(y^{(i)} \mid x^{(i)} ; \theta\right)
$$

since $\epsilon^{(i)}$ is i.i.d.

- The likelihood function is maximaized if

$$
\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} \rightarrow \min
$$

Logistic Regression

- For classification we want $0 \leq h_{\theta}(x) \leq 1$ since our $y \in\{0,1\}$
- The natural $h_{\theta}(x)$ choise is logistic(sigmoid) function

$$
\begin{gathered}
h_{\theta}(x)=g\left(\theta^{t} x\right)=\frac{1}{1+\exp ^{-\theta^{t} x}} \\
g(z)=\frac{1}{1+e^{-z}}
\end{gathered}
$$

Logistic Regression Cost Function

- Let us assume that

$$
\begin{gathered}
P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{gathered}
$$

- This can written more compactly as

$$
p(y \mid x ; \theta)=\left(h_{\theta}(x)\right)^{y}\left(1-h_{\theta}(x)\right)^{1-y}
$$

- Likelihood function could be written as

$$
L(\theta)=\prod_{i=1}^{m} p\left(y^{(i)} \mid x^{(i)} ; \theta\right)
$$

- This function could be rewritten as logliklihood function

$$
I(\theta)=\log L(\theta)=\sum_{i=1}^{m} y^{(i)} \log h\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h\left(x^{(i)}\right)\right)
$$

Gradient ascent

- In matrix form

$$
\theta:=\theta+\alpha \nabla_{\theta} I(\theta)
$$

- Let us start with just one training example (x, y) and take derivates to derive stochastic gradient ascent rule

$$
\frac{\partial I(\theta)}{\partial \theta_{j}}=\left(y-h_{\theta}(x)\right) x_{j}
$$

- Stohastic gradient ascent

for $\mathrm{i}=1$ to $\mathrm{m}\{$

$$
\theta_{j}=\theta_{j}+\alpha\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)}(\text { for every } \mathrm{j})
$$

\}
\}

Bayesian statistics and regularization

- Recently we viewed θ as an unknown parameter and estimate it using maximum likelihood

$$
\theta_{M L}=\operatorname{argmax}_{\theta} \prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)} ; \theta\right)
$$

- Lets think of θ as being a random variable distributed by some prior distribution $p(\theta)$
- Given a training set $S=\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{m}$ lets compute posterior

$$
p(\theta \mid S)=\frac{P(S \mid \theta) P(\theta)}{p(S)}=\frac{\left(\prod_{i=1}^{m} p\left(y^{(i)} \mid x^{(i)}, \theta\right)\right) p(\theta)}{\int_{\theta}\left(\prod_{i=1}^{m} p\left(y^{(i)} \mid x^{(i)}, \theta\right)\right) p(\theta) d \theta}
$$

- For logistic regression $p\left(y^{(i)} \mid x^{(i)}, \theta\right)=\left(h_{\theta}(x)\right)^{y}\left(1-h_{\theta}(x)\right)^{1-y}$
- In general it is very hard to estimate $p(\theta \mid S)$ over θ
- In practice

$$
\theta_{M A P}=\operatorname{argmax}_{\theta} \prod_{i=1}^{m} p\left(y^{\left(x_{i}\right)} \mid x^{\left(y_{i}\right)}, \theta\right) p(\theta)
$$

- Common choice $\theta(0, \lambda \mathrm{I})$, the norm of θ usually less then that selected by ML

Regularized Linear Regression

- Least-squares cost function

$$
J(\theta)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}+\frac{\lambda}{2 m} \sum_{j=1}^{n} \theta_{j}^{2}
$$

- Gradient descent Repeat until convergence \{

$$
\begin{gathered}
\theta_{j}=\theta_{j}-\alpha \sum_{i=1}^{m}\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{0}^{(i)}(\mathrm{j}=0) \\
\theta_{j}=\theta_{j}-\alpha \sum_{i=1}^{m}\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)}-\frac{\lambda}{m} \theta_{j}(\mathrm{j} \geq 1) .
\end{gathered}
$$

\}

Regularized Logistic Regression

- Regularized cost function

$$
J(\theta)=\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h\left(x^{(i)}\right)\right)+\frac{\lambda}{2 m} \sum_{j=1}^{n} \theta_{j}^{2}
$$

- Gradient ascent

Loop\{

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{m}\{
$$

$$
\theta_{j}=\theta_{j}+\alpha \sum_{i=1}^{n}\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{0}^{(i)}(\text { for } \mathrm{j}=0)
$$

$$
\theta_{j}=\theta_{j}+\alpha \sum_{i=1}^{n}\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)}+\frac{\lambda}{m} \theta_{j}(\text { for } \mathrm{j} \geq 1)
$$

\}
\}

