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Linear Regression

Living area (sq. feet) bedrooms Price (1000)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540

I Objective is to approximate dataset by some linear function.

hθ = θ0 + θ1x1 + θ2x2

I More generally for arbitrary dataset we are looking for

hθ =
n∑

i=0

θixi = θtx

I we assume that x0 = 1 - intercept term
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Cost Function and Gradient Descent Algorithm

I Least-squares cost function

J(θ) =
1

2

m∑
i=1

(hθ(x (i))− y (i))2 → min

I Gradient descent algorithm starts with some initial θ and
repeatedly performs update

θj = θj − α
∂J(θ)

∂θj

I Gradient descent
Repeat until convergence {

θj = θj − α
m∑
i=1

(y (i) − hθ(x (i)))x
(i)
j (for every j) .

}
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Stohastic gradient descent

I Stohastic gradient descent
Loop{

for i = 1 to m{

θj = θj + α(y (i) − hθ(x (i)))x
(i)
j (for every j) .

}
}
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Normal Equations

I Least-squares cost function

J(θ) =
1

2

m∑
i=1

(hθ(x (i))− y (i))2

I In matrix form could be rewrited as

J(θ) =
1

2
(Xθ − ȳ)(Xθ − ȳ)

I By taken gradient from cost function in the matrix form we get

θ = (X tX )−1X t ȳ
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Probabilistic Interpretation

I Let assume that the target variables and the inputs are related
via the equation

y (i) = θtx (i) + ε(i)

I ε(i) is an error term that independently and identically
distributed according to a Gaussian distribution (N (0, σ2))

p(ε(i)) =
1√
2πσ

exp

(
−(ε(i))2

2σ2

)

I We can rewrite this as a conditional distribution

p(y (i)|x (i); θ) =
1√
2πσ

exp

(
−(y (i) − θx (i))2

2σ2

)
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Probabilistic Interpretation

I To estimate θ lets use likelihood function

L(θ) =
m∏
i=1

p(y (i)|x (i); θ)

since ε(i) is i.i.d.
I The likelihood function is maximaized if

1

2

m∑
i=1

(hθ(x (i))− y (i))2 → min
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Logistic Regression

I For classification we want 0 ≤ hθ(x) ≤ 1 since our y ∈ {0, 1}
I The natural hθ(x) choise is logistic(sigmoid) function

hθ(x) = g(θtx) =
1

1 + exp−θtx

g(z) =
1

1 + e−z
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Logistic Regression Cost Function

I Let us assume that

P(y = 1|x ; θ) = hθ(x)

P(y = 0|x ; θ) = 1− hθ(x)

I This can written more compactly as

p(y |x ; θ) = (hθ(x))y (1− hθ(x))1−y

I Likelihood function could be written as

L(θ) =
m∏
i=1

p(y (i)|x (i); θ)

I This function could be rewritten as logliklihood function

l(θ) = log L(θ) =
m∑
i=1

y (i) log h(x (i))+(1−y (i)) log(1−h(x (i)))
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Gradient ascent

I In matrix form
θ := θ + α∇θl(θ)

I Let us start with just one training example (x , y) and take
derivates to derive stochastic gradient ascent rule

∂l(θ)

∂θj
= (y − hθ(x))xj

I Stohastic gradient ascent
Loop{

for i = 1 to m{

θj = θj + α(y (i) − hθ(x (i)))x
(i)
j (for every j) .

}
}
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Bayesian statistics and regularization

I Recently we viewed θ as an unknown parameter and estimate it using
maximum likelihood

θML = argmaxθ
n∏

i=1

p(y (i)|x (i); θ)

I Lets think of θ as being a random variable distributed by some prior
distribution p(θ)

I Given a training set S = {(x (i), y (i))}mi=1 lets compute posterior

p(θ|S) = P(S |θ)P(θ)
p(S)

=
(
∏m

i=1 p(y
(i)|x (i), θ))p(θ)∫

θ
(
∏m

i=1 p(y
(i)|x (i), θ))p(θ)dθ

I For logistic regression p(y (i)|x (i), θ) = (hθ(x))y (1− hθ(x))1−y

I In general it is very hard to estimate p(θ|S) over θ
I In practice

θMAP = argmaxθ
m∏
i=1

p(y (xi )|x (yi ), θ)p(θ)

I Common choice θ(0, λI), the norm of θ usually less then that selected by
ML
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Regularized Linear Regression

I Least-squares cost function

J(θ) =
1

2m

m∑
i=1

(hθ(x (i))− y (i))2 +
λ

2m

n∑
j=1

θ2j

I Gradient descent
Repeat until convergence {

θj = θj − α
m∑
i=1

(y (i) − hθ(x (i)))x
(i)
0 (j = 0) .

θj = θj − α
m∑
i=1

(y (i) − hθ(x (i)))x
(i)
j −

λ

m
θj (j ≥ 1) .

}
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Regularized Logistic Regression

I Regularized cost function

J(θ) =
1

m

m∑
i=1

y (i) log h(x (i))+(1−y (i)) log(1−h(x (i)))+
λ

2m

n∑
j=1

θ2j

I Gradient ascent
Loop{

for i = 1 to m{

θj = θj + α

n∑
i=1

(y (i) − hθ(x (i)))x
(i)
0 (for j = 0) .

θj = θj + α

n∑
i=1

(y (i) − hθ(x (i)))x
(i)
j +

λ

m
θj (for j ≥ 1) .

}
}
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