Алгебра phys 1 осень — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 87: Строка 87:
 
<li>Кольцо кватернионов. Скалярная и векторная части. Чистые кватернионы. Сопряжение. Модуль. Теорема о свойствах кватернионов.
 
<li>Кольцо кватернионов. Скалярная и векторная части. Чистые кватернионы. Сопряжение. Модуль. Теорема о свойствах кватернионов.
 
<li>Группа <math>\mathrm S^3</math>. Экспонента. Теорема о свойствах экспоненты. Теорема об описании изометрий двумерного и трехмерного пространств.</ol>
 
<li>Группа <math>\mathrm S^3</math>. Экспонента. Теорема о свойствах экспоненты. Теорема об описании изометрий двумерного и трехмерного пространств.</ol>
 +
 +
<h5>Правила проведения коллоквиума</h5>
 +
<ul><li>В течение всего времени проведения коллоквиума каждый студент должен иметь при себе чистую бумагу (желательно листы формата A4),<br>пишущие принадлежности и список вопросов к коллоквиуму. Кроме того, рекомендуется принести с собой на коллоквиум конспект лекций и<math>/</math>или<br>подробный план курса, так как их будет можно использовать на коллоквиуме в некоторые моменты времени (подробности написаны ниже).
 +
<li>Для каждого студента коллоквиум начинается с того, что данный студент оставляет конспект лекций и<math>/</math>или подробный план курса на специальном<br>столе («столе знаний»), затем вытягивает билет с номерами вопросов (первый номер будет от 1 до 16, второй номер будет от 17 до 32) и затем<br>начинает готовиться к ответам на вопросы из билета. Во время подготовки к ответам на вопросы из билета можно не более двух раз подойти к<br>«столу знаний» и в течение не более двух минут посмотреть конспект лекций и<math>/</math>или подробный план курса.
 +
<li>Во время подготовки к ответам на вопросы из билета нужно подробно раскрыть термины, содержащиеся в формулировках вопросов (например,<br>если вопрос содержит определения, то к ним должны быть приведены примеры; если вопрос содержит теоремы, то они должны быть доказаны).<br>Основные мысли из ответа на вопросы из билета должны быть записаны (эти записи нужно отдать преподавателю после окончания сдачи).
 +
<li>После окончания подготовки каждый студент должен ответить преподавателю вопросы из билета. Кроме того, каждому студенту будут заданы<br>дополнительные вопросы и упражнения на знание определений, конструкций и формулировок (теорем, лемм и так далее) по всем темам первой<br>половины первого семестра, а также студентам, претендующим на оценку «отлично» за коллоквиум, будет дана задача.
 +
<li>При подготовке к коллоквиуму рекомендуется обратить особое внимание на глубокое понимание материала, а не на заучивание (возможность<br>использовать «стол знаний» во время подготовки к ответу на коллоквиуме дается для того, чтобы уменьшить заучивание).</ul>

Версия 21:00, 30 октября 2018

Лектор и преподаватели практики

Лектор: Евгений Евгеньевич Горячко.

Преподаватель практики у подгруппы по алгебре 101/1: Евгений Евгеньевич Горячко.
Таблица успеваемости на практике студентов подгруппы по алгебре 101/1.

Преподаватель практики у подгруппы по алгебре 101/2: Алексей Викторович Ржонсницкий.
Таблица успеваемости на практике студентов подгруппы по алгебре 101/2.

Дополнительная литература

[1]  Э.Б. Винберг. Курс алгебры.
[2]  А.Л. Городенцев. Алгебра – 1.
[3]  А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры.
[4]  А.И. Кострикин. Введение в алгебру. Часть III. Основные структуры алгебры.
[5]  Ю.И. Манин. Математика как метафора.

Книги по алгебре (разного качества) можно скачать через сайт http://eek.diary.ru/p57704941.htm.

Полезные учебные материалы по алгебре имеются на странице А.Л. Городенцева и на странице А.В. Степанова.

Содержание первого семестра курса алгебры

1   Множества, отображения, отношения
  • 1.1  Множества
    Логические операции. Кванторы. Равенство множеств. Задание множества перечислением элементов. Выделение подмножества. Операции над
    множествами. Теорема об операциях над множествами. Числовые множества. Множество подмножеств множества. Прямая степень множества.
  • 1.2  Отображения
    Отображения. Область и кообласть отображения. Образы и прообразы относительно отображения. Сужения отображения. Инъекции. Сюръекции.
    Биекции. Композиция отображений. Тождественное отображение. Теорема о композиции отображений. Обратное отображение.
  • 1.3  Отношения
    Отношения. Область и кообласть отношения. Отношения эквивалентности. Классы эквивалентности. Фактормножества. Трансверсали. Разбиения.
    Слои отображения. Факторотображения. Принцип Дирихле. Отношения порядка. Наименьший элемент множества с отношением порядка.
2   Группы (часть 1)
  • 2.1  Множества с операцией
    Операции на множестве. Гомоморфизмы. Изоморфизмы. Эндоморфизмы. Автоморфизмы. Теорема о композиции гомоморфизмов. Операции над
    подмножествами. Ассоциативные и коммутативные операции. Полугруппы. Гомоморфизмы полугрупп. Лемма об обобщенной ассоциативности.
  • 2.2  Моноиды и группы (основные определения и примеры)
    Моноиды. Гомоморфизмы моноидов. Примеры моноидов. Обратимые элементы моноида. Группы. Гомоморфизмы групп. Таблица Кэли. Примеры групп.
    Группы изометрий. Симметрические группы. Цикловая запись перестановки. Лемма о циклах. Мультипликативные и аддитивные обозначения.
  • 2.3  Подгруппы, классы смежности, циклические группы
    Подгруппы. Подгруппа, порожденная множеством. Правые и левые классы смежности по подгруппе. Теорема Лагранжа. Индекс подгруппы. Порядок
    элемента группы. Лемма о порядке элемента. Теорема об обратимых остатках. Циклические группы. Теорема о циклических группах.
  • 2.4  Нормальные подгруппы, факторгруппы, прямое произведение групп
    Нормальные подгруппы. Сопряжение. Нормальная подгруппа, порожденная множеством. Ядро гомоморфизма. Теорема о слоях и ядре гомоморфизма.
    Факторгруппы. Теорема о гомоморфизме. Задание групп образующими и соотношениями. Прямое произведение групп. Теорема о прямом произведении.
3   Кольца (часть 1)
  • 3.1  Определения и конструкции, связанные с кольцами
    Кольца. Гомоморфизмы колец. Примеры колец. Аддитивная группа и мультипликативная группа кольца. Подкольца. Идеалы. Факторкольца. Теорема о
    гомоморфизме. Прямое произведение колец. Характеристика. Кольца без делителей нуля. Области целостности. Тела. Поля. Гомоморфизмы полей.
  • 3.2  Кольца многочленов
    Кольца многочленов. Лемма о степени многочлена. Делимость. Неприводимые многочлены. Лемма о делении многочленов с остатком. Кольцо остатков
    по модулю многочлена. Полиномиальные функции. Корни многочленов. Теорема Безу. Теорема о количестве корней многочлена. Теорема Виета.
  • 3.3  Поле комплексных чисел
    Кольцо комплексных чисел. Вещественная и мнимая части. Сопряжение. Модуль. Теорема о свойствах комплексных чисел. Группа . Экспонента.
    Теорема о свойствах экспоненты. Группы корней из единицы. «Основная теорема алгебры». Теорема о неприводимых многочленах над полями и .
  • 3.4  Тело кватернионов
    Кольцо кватернионов. Скалярная и векторная части. Чистые кватернионы. Умножение чистых кватернионов. Сопряжение. Модуль. Теорема о свойствах
    кватернионов. Группа . Экспонента. Теорема о свойствах экспоненты. Теорема об описании изометрий двумерного и трехмерного пространств.

Подробный план первой половины первого семестра курса алгебры

Информация о коллоквиуме

Вопросы к коллоквиуму по первой половине первого семестра
  1. Отображения. Область и кообласть отображения. Образы и прообразы относительно отображения. Сужения отображения.
  2. Инъекции. Сюръекции. Биекции. Композиция отображений. Тождественное отображение.
  3. Теорема о композиции отображений. Обратное отображение.
  4. Отношения. Область и кообласть отношения. Отношения эквивалентности. Классы эквивалентности. Фактормножества. Трансверсали.
  5. Разбиения. Слои отображения. Факторотображения. Принцип Дирихле.
  6. Отношения порядка. Наименьший элемент множества с отношением порядка.
  7. Операции на множестве. Гомоморфизмы. Изоморфизмы. Эндоморфизмы. Автоморфизмы.
  8. Теорема о композиции гомоморфизмов. Операции над подмножествами. Ассоциативные и коммутативные операции.
  9. Полугруппы. Гомоморфизмы полугрупп. Лемма об обобщенной ассоциативности.
  10. Моноиды. Гомоморфизмы моноидов. Примеры моноидов. Обратимые элементы моноида.
  11. Группы. Гомоморфизмы групп. Таблица Кэли. Примеры групп. Группы изометрий.
  12. Симметрические группы. Цикловая запись перестановки. Лемма о циклах. Мультипликативные и аддитивные обозначения.
  13. Подгруппы. Подгруппа, порожденная множеством.
  14. Правые и левые классы смежности по подгруппе. Теорема Лагранжа. Индекс подгруппы.
  15. Порядок элемента группы. Лемма о порядке элемента.
  16. Теорема об обратимых остатках. Циклические группы. Теорема о циклических группах.
  17. Нормальные подгруппы. Сопряжение. Нормальная подгруппа, порожденная множеством.
  18. Ядро гомоморфизма. Теорема о слоях и ядре гомоморфизма.
  19. Факторгруппы. Теорема о гомоморфизме. Задание групп образующими и соотношениями.
  20. Прямое произведение групп. Теорема о прямом произведении.
  21. Кольца. Гомоморфизмы колец. Примеры колец. Аддитивная группа и мультипликативная группа кольца. Подкольца.
  22. Идеалы. Факторкольца. Теорема о гомоморфизме. Прямое произведение колец. Характеристика.
  23. Кольца без делителей нуля. Области целостности. Тела. Поля. Гомоморфизмы полей.
  24. Кольцо многочленов. Лемма о степени многочлена. Делимость. Неприводимые многочлены.
  25. Лемма о делении многочленов с остатком. Кольцо остатков по модулю многочлена.
  26. Полиномиальные функции. Корни многочленов. Теорема Безу.
  27. Теорема о количестве корней многочлена. Теорема Виета.
  28. Кольцо комплексных чисел. Вещественная и мнимая части. Сопряжение. Модуль. Теорема о свойствах комплексных чисел.
  29. Группа . Экспонента. Теорема о свойствах экспоненты. Группы корней из единицы.
  30. «Основная теорема алгебры». Теорема о неприводимых многочленах над полями и .
  31. Кольцо кватернионов. Скалярная и векторная части. Чистые кватернионы. Сопряжение. Модуль. Теорема о свойствах кватернионов.
  32. Группа . Экспонента. Теорема о свойствах экспоненты. Теорема об описании изометрий двумерного и трехмерного пространств.
Правила проведения коллоквиума
  • В течение всего времени проведения коллоквиума каждый студент должен иметь при себе чистую бумагу (желательно листы формата A4),
    пишущие принадлежности и список вопросов к коллоквиуму. Кроме того, рекомендуется принести с собой на коллоквиум конспект лекций иили
    подробный план курса, так как их будет можно использовать на коллоквиуме в некоторые моменты времени (подробности написаны ниже).
  • Для каждого студента коллоквиум начинается с того, что данный студент оставляет конспект лекций иили подробный план курса на специальном
    столе («столе знаний»), затем вытягивает билет с номерами вопросов (первый номер будет от 1 до 16, второй номер будет от 17 до 32) и затем
    начинает готовиться к ответам на вопросы из билета. Во время подготовки к ответам на вопросы из билета можно не более двух раз подойти к
    «столу знаний» и в течение не более двух минут посмотреть конспект лекций иили подробный план курса.
  • Во время подготовки к ответам на вопросы из билета нужно подробно раскрыть термины, содержащиеся в формулировках вопросов (например,
    если вопрос содержит определения, то к ним должны быть приведены примеры; если вопрос содержит теоремы, то они должны быть доказаны).
    Основные мысли из ответа на вопросы из билета должны быть записаны (эти записи нужно отдать преподавателю после окончания сдачи).
  • После окончания подготовки каждый студент должен ответить преподавателю вопросы из билета. Кроме того, каждому студенту будут заданы
    дополнительные вопросы и упражнения на знание определений, конструкций и формулировок (теорем, лемм и так далее) по всем темам первой
    половины первого семестра, а также студентам, претендующим на оценку «отлично» за коллоквиум, будет дана задача.
  • При подготовке к коллоквиуму рекомендуется обратить особое внимание на глубокое понимание материала, а не на заучивание (возможность
    использовать «стол знаний» во время подготовки к ответу на коллоквиуме дается для того, чтобы уменьшить заучивание).