Алгебра phys 1 февраль–март — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 47: Строка 47:
 
<li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j=e_j^*=\bigl(v\mapsto(v^e)^j\bigr)</math>. Столбец <math>e^*\!=\biggl(\begin{smallmatrix}e^1\\\vdots\\e^n\end{smallmatrix}\biggr)</math>. Строка координат ковектора.
 
<li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j=e_j^*=\bigl(v\mapsto(v^e)^j\bigr)</math>. Столбец <math>e^*\!=\biggl(\begin{smallmatrix}e^1\\\vdots\\e^n\end{smallmatrix}\biggr)</math>. Строка координат ковектора.
 
<li>Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Изоморфизм <math>\biggl(\!\begin{align}V^*\!&\to K_n\!\\\lambda&\mapsto\lambda_e\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>, а также <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>.
 
<li>Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Изоморфизм <math>\biggl(\!\begin{align}V^*\!&\to K_n\!\\\lambda&\mapsto\lambda_e\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>, а также <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>.
<li>Двойственный оператор (<math>a\in\mathrm{Hom}(V,Y)</math>): <math>\biggl(\!\begin{align}a^*\colon Y^*\!&\to V^*\\\xi&\mapsto\xi\circ a\end{align}\!\biggr)</math>. Утверждение: <i>пусть <math>\dim V<\infty</math>; тогда <math>\biggl(\!\begin{align}V&\to V^{**}\\v&\mapsto\bigl(\lambda\mapsto\lambda(v)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм</i>.</ul><br>
+
<li>Двойственный оператор (<math>a\in\mathrm{Hom}(V,Y)</math>): <math>\biggl(\!\begin{align}a^*\colon Y^*\!&\to V^*\\\theta&\mapsto\theta\circ a\end{align}\!\biggr)</math>. Утверждение: <i>пусть <math>\dim V<\infty</math>; тогда <math>\biggl(\!\begin{align}V&\to V^{**}\\v&\mapsto\bigl(\lambda\mapsto\lambda(v)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм</i>.</ul><br>
  
 
<table border cellpadding="4" cellspacing="0">
 
<table border cellpadding="4" cellspacing="0">
Строка 83: Строка 83:
 
<li>Пространство симметричных полилинейных форм: <math>\mathrm{SMulti}_kV=\{\omega\in\mathrm{Multi}_kV\mid\forall\,i,j\in\{1,\ldots,k\}\;\bigl(i\ne j\,\Rightarrow\,\mathrm{laf}_{(i\;j)}(\omega)=\omega\bigr)\}\le\mathrm{Multi}_kV</math>.
 
<li>Пространство симметричных полилинейных форм: <math>\mathrm{SMulti}_kV=\{\omega\in\mathrm{Multi}_kV\mid\forall\,i,j\in\{1,\ldots,k\}\;\bigl(i\ne j\,\Rightarrow\,\mathrm{laf}_{(i\;j)}(\omega)=\omega\bigr)\}\le\mathrm{Multi}_kV</math>.
 
<li>Пр.-во антисимм. полилин. форм: <math>\mathrm{AMulti}_kV=\{\omega\in\mathrm{Multi}_kV\mid\forall\,v_1,\ldots,v_k\in V\;\bigl(\exists\,i,j\in\{1,\ldots,k\}\;(i\ne j\,\land\,v_i=v_j)\,\Rightarrow\,\omega(v_1,\ldots,v_k)=0\bigr)\}</math>.
 
<li>Пр.-во антисимм. полилин. форм: <math>\mathrm{AMulti}_kV=\{\omega\in\mathrm{Multi}_kV\mid\forall\,v_1,\ldots,v_k\in V\;\bigl(\exists\,i,j\in\{1,\ldots,k\}\;(i\ne j\,\land\,v_i=v_j)\,\Rightarrow\,\omega(v_1,\ldots,v_k)=0\bigr)\}</math>.
<li><u>Лемма о симметричных и антисимметричных полилинейных формах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) <math>\mathrm{SMulti}_kV=\{\omega\in\mathrm{Multi}_kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{laf}_u(\omega)=\omega\bigr)\}</math>;<br>(2) <math>\mathrm{AMulti}_kV\le\{\omega\in\mathrm{Multi}_kV\mid\forall\,i,j\in\{1,\ldots,k\}\;\bigl(i\ne j\,\Rightarrow\,\mathrm{laf}_{(i\;j)}(\omega)=-\omega\bigr)\}</math> и, если <math>\mathrm{char}\,K\ne2</math>, то "<math>\,\le</math>" можно заменить на "<math>\,=</math>";<br>(3) <math>\{\omega\in\mathrm{Multi}_kV\mid\forall\,i,j\in\{1,\ldots,k\}\;\bigl(i\ne j\,\Rightarrow\,\mathrm{laf}_{(i\;j)}(\omega)=-\omega\bigr)\}=\{\omega\in\mathrm{Multi}_kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{laf}_u(\omega)=\mathrm{sgn}(u)\,\omega\bigr)\}</math>.</i>
+
<li><u>Лемма о симметричных и антисимметричных полилинейных формах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) <math>\mathrm{SMulti}_kV=\{\omega\in\mathrm{Multi}_kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{laf}_u(\omega)=\omega\bigr)\}</math>;<br>(2) <math>\mathrm{AMulti}_kV\subseteq\{\omega\in\mathrm{Multi}_kV\mid\forall\,i,j\in\{1,\ldots,k\}\;\bigl(i\ne j\,\Rightarrow\,\mathrm{laf}_{(i\;j)}(\omega)=-\omega\bigr)\}</math> и, если <math>\mathrm{char}\,K\ne2</math>, то "<math>\,\subseteq</math>" можно заменить на "<math>\,=</math>";<br>(3) <math>\{\omega\in\mathrm{Multi}_kV\mid\forall\,i,j\in\{1,\ldots,k\}\;\bigl(i\ne j\,\Rightarrow\,\mathrm{laf}_{(i\;j)}(\omega)=-\omega\bigr)\}=\{\omega\in\mathrm{Multi}_kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{laf}_u(\omega)=\mathrm{sgn}(u)\,\omega\bigr)\}</math>.</i>
 
<li>Пр.-во форм объема: <math>\mathrm{VF}(V)=\mathrm{AMulti}_{\,\dim V}V</math>; <math>\mathrm{VF}^\times\!(V)=\mathrm{VF}(V)\!\setminus\!\{0\}</math>. Форма объема, связанная с базисом: <math>vol^e(v_1,\ldots,v_n)=\det\!\bigl(v_1^e\;\ldots\;v_n^e\bigr)</math>.
 
<li>Пр.-во форм объема: <math>\mathrm{VF}(V)=\mathrm{AMulti}_{\,\dim V}V</math>; <math>\mathrm{VF}^\times\!(V)=\mathrm{VF}(V)\!\setminus\!\{0\}</math>. Форма объема, связанная с базисом: <math>vol^e(v_1,\ldots,v_n)=\det\!\bigl(v_1^e\;\ldots\;v_n^e\bigr)</math>.
 
<li><u>Теорема о формах объема.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда<br>(1) <math>vol^e\!\in\mathrm{VF}^\times\!(V)</math> и <math>vol^e(e_1,\ldots,e_n)=1</math>;<br>(2) для любых <math>\omega\in\mathrm{VF}(V)</math> выполнено <math>\omega=\omega(e_1,\ldots,e_n)\,vol^e</math> и для любых <math>\tilde e\in\mathrm{OB}(V)</math> выполнено <math>vol^\tilde e\!=\det\mathrm c_e^\tilde e\!\cdot vol^e</math>;<br>(3) множество <math>\{vol^e\}</math> — базис пространства <math>\,\mathrm{VF}(V)</math> (и, значит, <math>\dim\mathrm{VF}(V)=1</math>);<br>(4) для любых <math>\omega\in\mathrm{VF}^\times\!(V)</math> и <math>v_1,\ldots,v_n\in V</math> выполнено <math>(v_1,\ldots,v_n)\in\mathrm{OB}(V)\,\Leftrightarrow\,\omega(v_1,\ldots,v_n)\ne0</math>.</i></ul>
 
<li><u>Теорема о формах объема.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; тогда<br>(1) <math>vol^e\!\in\mathrm{VF}^\times\!(V)</math> и <math>vol^e(e_1,\ldots,e_n)=1</math>;<br>(2) для любых <math>\omega\in\mathrm{VF}(V)</math> выполнено <math>\omega=\omega(e_1,\ldots,e_n)\,vol^e</math> и для любых <math>\tilde e\in\mathrm{OB}(V)</math> выполнено <math>vol^\tilde e\!=\det\mathrm c_e^\tilde e\!\cdot vol^e</math>;<br>(3) множество <math>\{vol^e\}</math> — базис пространства <math>\,\mathrm{VF}(V)</math> (и, значит, <math>\dim\mathrm{VF}(V)=1</math>);<br>(4) для любых <math>\omega\in\mathrm{VF}^\times\!(V)</math> и <math>v_1,\ldots,v_n\in V</math> выполнено <math>(v_1,\ldots,v_n)\in\mathrm{OB}(V)\,\Leftrightarrow\,\omega(v_1,\ldots,v_n)\ne0</math>.</i></ul>
Строка 92: Строка 92:
 
<p><u>Операторная теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>n=\dim V<\infty</math>; тогда<br>(1) для любых <math>a\in\mathrm{End}(V)</math> и <math>e\in\mathrm{OB}(V)</math> выполнено <math>\det a=vol^e(a(e_1),\ldots,a(e_n))=\det a_e^e</math>;<br>(2) <math>\mathrm{GL}(V)=\{a\in\mathrm{End}(V)\mid\det a\ne0\}</math> и отображение <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to K\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению.</i></p>
 
<p><u>Операторная теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>n=\dim V<\infty</math>; тогда<br>(1) для любых <math>a\in\mathrm{End}(V)</math> и <math>e\in\mathrm{OB}(V)</math> выполнено <math>\det a=vol^e(a(e_1),\ldots,a(e_n))=\det a_e^e</math>;<br>(2) <math>\mathrm{GL}(V)=\{a\in\mathrm{End}(V)\mid\det a\ne0\}</math> и отображение <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to K\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению.</i></p>
 
<p><u>Матричная теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле и <math>n\in\mathbb N_0</math>; тогда<br>(1) для любых <math>a\in\mathrm{Mat}(n,K)</math> определитель матрицы <math>a</math> равен определителю линейного оператора <math>\biggl(\!\begin{align}K^n\!&\to K^n\\v&\mapsto a\cdot v\end{align}\!\biggr)</math>;<br>(2) <math>\mathrm{GL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a\ne0\}</math> и отображение <math>\biggl(\!\begin{align}\mathrm{Mat}(n,K)&\to K\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению.</i></p>
 
<p><u>Матричная теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле и <math>n\in\mathbb N_0</math>; тогда<br>(1) для любых <math>a\in\mathrm{Mat}(n,K)</math> определитель матрицы <math>a</math> равен определителю линейного оператора <math>\biggl(\!\begin{align}K^n\!&\to K^n\\v&\mapsto a\cdot v\end{align}\!\biggr)</math>;<br>(2) <math>\mathrm{GL}(n,K)=\{a\in\mathrm{Mat}(n,K)\mid\det a\ne0\}</math> и отображение <math>\biggl(\!\begin{align}\mathrm{Mat}(n,K)&\to K\\a&\mapsto\det a\end{align}\!\biggr)</math> — гомоморфизм моноидов по умножению.</i></p>
<li>Миноры — определители подматриц. Дополнит. миноры. Присоединенная матрица: <math>\mathrm{adj}(a)^i_j=(-1)^{i+j}</math><math>\bigl(</math>дополнит. минор матрицы <math>a</math> в позиции <math>(j,i)</math><math>\bigr)</math>.
+
<li>Миноры — определители подматриц. Дополнит. миноры. Присоединенная матрица: <math>\mathrm{adj}(a)^j_i=(-1)^{i+j}</math><math>\bigl(</math>дополнит. минор матрицы <math>a</math> в позиции <math>(i,j)</math><math>\bigr)</math>.
 
<li><u>Теорема о присоединенной матрице.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,K)</math>; тогда<br>(1) для любых <math>i,k\in\{1,\ldots,n\}</math> выполнено <math>\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_k=\det a\cdot\delta^i_k</math> и для любых <math>j,l\in\{1,\ldots,n\}</math> выполнено <math>\sum_{i=1}^n\mathrm{adj}(a)^l_i\,a^i_j=\det a\cdot\delta^l_j</math>;<br>(2) для любых <math>i\in\{1,\ldots,n\}</math> выполнено <math>\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_i=\det a</math> и для любых <math>j\in\{1,\ldots,n\}</math> выполнено <math>\sum_{i=1}^n\mathrm{adj}(a)^j_i\,a^i_j=\det a</math><br>(это формулы разложения определителя матрицы <math>a</math> по <math>i</math>-й строке матрицы <math>a</math> и по <math>j</math>-му столбцу матрицы <math>a</math> соответственно);<br>(3) <math>a\cdot\mathrm{adj}(a)=\mathrm{adj}(a)\cdot a=\det a\cdot\mathrm{id_n}</math> и, если <math>a\in\mathrm{GL}(n,K)</math>, то <math>a^{-1}\!=\frac1{\det a}\,\mathrm{adj}(a)</math>.</i>
 
<li><u>Теорема о присоединенной матрице.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,K)</math>; тогда<br>(1) для любых <math>i,k\in\{1,\ldots,n\}</math> выполнено <math>\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_k=\det a\cdot\delta^i_k</math> и для любых <math>j,l\in\{1,\ldots,n\}</math> выполнено <math>\sum_{i=1}^n\mathrm{adj}(a)^l_i\,a^i_j=\det a\cdot\delta^l_j</math>;<br>(2) для любых <math>i\in\{1,\ldots,n\}</math> выполнено <math>\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_i=\det a</math> и для любых <math>j\in\{1,\ldots,n\}</math> выполнено <math>\sum_{i=1}^n\mathrm{adj}(a)^j_i\,a^i_j=\det a</math><br>(это формулы разложения определителя матрицы <math>a</math> по <math>i</math>-й строке матрицы <math>a</math> и по <math>j</math>-му столбцу матрицы <math>a</math> соответственно);<br>(3) <math>a\cdot\mathrm{adj}(a)=\mathrm{adj}(a)\cdot a=\det a\cdot\mathrm{id_n}</math> и, если <math>a\in\mathrm{GL}(n,K)</math>, то <math>a^{-1}\!=\frac1{\det a}\,\mathrm{adj}(a)</math>.</i>
 
<li><u>Правило Крамера.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math>, <math>a\in\mathrm{GL}(n,K)</math>, <math>y\in K^n</math> и <math>j\in\{1,\ldots,n\}</math>; тогда <math>(a^{-1}\!\cdot y)^j=\frac1{\det a}\det\!\bigl(a^\bullet_1\;\ldots\;a^\bullet_{j-1}\;\,y\;\,a^\bullet_{j+1}\;\ldots\;a^\bullet_n\bigr)</math>.</i>
 
<li><u>Правило Крамера.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math>, <math>a\in\mathrm{GL}(n,K)</math>, <math>y\in K^n</math> и <math>j\in\{1,\ldots,n\}</math>; тогда <math>(a^{-1}\!\cdot y)^j=\frac1{\det a}\det\!\bigl(a^\bullet_1\;\ldots\;a^\bullet_{j-1}\;\,y\;\,a^\bullet_{j+1}\;\ldots\;a^\bullet_n\bigr)</math>.</i>

Версия 22:00, 18 марта 2017

2  Линейная алгебра

Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-
научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-
щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического
анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-
нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство
приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.
Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности
малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы
является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной
алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной
двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-
лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.
А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия
Одно из отличий математиков от физиков — стремление математиков назвать вещи своими именами. Примеров тому — масса,
особенно в двадцатом веке, когда произошло «размежевание» математики и физики.
Классический пример — линейная алгебра. То, что системы линейных уравнений имеют «какую-то структуру», понимали все, и
до Гаусса, и после. Соответственно, манипуляции с этими уравнениями, позволяющие решить систему или, скажем, привести
квадратичную форму к сумме квадратов, знали и физики, и инженеры, и математики. Но математики полезли на стенку и нашли
правильный язык: векторные пространства, линейные операторы, двойственные пространства и т.д. Это могло бы показаться
игрой со словами, но оказалось, что технически гораздо более сложные вещи (дифференциальные и интегральные уравнения)
также описываются на языке линейной алгебры, только бесконечномерной.
То же верно и в отношении других физических конструктов. Физики обнаружили экспериментальным путем (выписывая лист за
листом громоздкие формулы), что некоторые величины, задаваемые индексированными массивами данных, по-разному преоб-
разуются при замене координат, и назвали соответствующие величины тензорами. Это — чистая «феноменология», позволяю-
щая быстро проконтролировать вычисления на предмет ошибок (ну, или механизировать эти вычисления). Математики долго
пыхтели и сформулировали понятия симметрических и антисимметрических произведений векторных пространств и их двойст-
венных пространств и разобрались, откуда они возникают. В общем, исторический опыт убедительно подтверждает: если чело-
век узнал, что всю жизнь говорил прозой, то в дальнейшем ему легче жить с этим знанием. ;-)
По мотивам комментария в Живом Журнале (avva.livejournal.com/2932837.html)

2.1  Векторные пространства

2.1.1  Определения и конструкции, связанные с векторными пространствами
  • Векторное пространство над полем — абелева группа с умножением на скаляры из , являющимся действием эндоморфизмами по сложению.
  • Примеры: пространства столбцов и строк, пространства матриц, пространства функций, пространства финитных функций, пространства многочленов.
  • Гомоморфизмы вект. пространств (линейные операторы): — вект. пространство. Кольцо , группа .
  • Подпростр.-во: . Подпростр.-во , порожд. мн.-вом , — наименьшее подпростр.-во, содержащее .
  • Утверждение: . Линейная комбинация элементов мн.-ва : .
  • Ядро и образ линейного оператора : и . Утверждение: и . Теорема о слоях и ядре линейного оператора.

    Теорема о слоях и ядре линейного оператора. Пусть — поле, — векторные пространства над полем и ; тогда
    (1) для любых и выполнено (и, значит, );
    (2) , если и только если .

  • Матричная запись системы из линейных уравн.-й от переменных: (, , ). Однородная система: .
  • Утверждение: пусть ; тогда . Линейные дифференциальные уравн.-я и системы уравн.-й.
2.1.2  Независимые множества, порождающие множества, базисы
  • — независимое мн.-во: . — порождающее мн.-во: . Базис — независ. порожд. мн.-во.
  • Стандартные базисы пространств , и : , и .
  • Теорема о свойствах базиса. Пусть — поле, — векторное простр.-во над полем и ; тогда следующие утверждения эквивалентны:
    (у1) — базис пространства ;
    (у2) отображение — изоморфизм векторных пространств;
    (у3) для любого вектора существует единственная такая финитная функция , что ;
    (у4) — независимое подмножество в и для любого вектора множество не является независимым подмножеством в
    (то есть — максимальное независимое множество);
    (у5) — порождающее подмножество в и для любого вектора множество не является порождающим подмножеством в
    (то есть — минимальное порождающее множество).
  • Теорема об универсальности базиса. Пусть — поле, — векторные пространства над полем и — базис пространства ; тогда
    для любых существует единственный такой линейный оператор , что (и, значит, отображение
    — изоморфизм векторных пространств).
  • Теорема о базисах и линейных операторах. Пусть — поле, — вект. пр.-ва над , — базис пространства и ; тогда
    (1) , если и только если и — независимое множество;
    (2) , если и только если — порождающее множество;
    (3) , если и только если и — базис.
  • Теорема о порядках независимых и порождающих множеств. Пусть — поле, — вект. простр.-во над полем , и ; тогда
    (1) если — независимое множество и , то ;
    (2) если и — базисы пространства , то .
  • Теорема о построении базиса. Пусть — поле, — векторное пространство над полем , и , а также в пространстве
    существует конечное порождающее подмножество; тогда
    (1) если — независимое множество, то существует такой базис пространства , что (то есть можно дополнить до базиса);
    (2) если — порождающее множество, то существует такой базис пространства , что (то есть из можно выделить базис);
    (3) в пространстве существует базис.
2.1.3  Размерность, координаты, замена координат
  • Размерность пр.-ва — порядок (мощность) базиса пр.-ва . Примеры: , , .
  • Теорема о свойствах размерности. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любого независимого подмножества в выполнено и, если , то — базис;
    (2) для любого порождающего подмножества в выполнено и, если , то — базис;
    (3) для любого подпространства в выполнено и, если , то .
  • Теорема о размерности и линейных операторах. Пусть — поле, — векторные пространства над полем и ; тогда
    (1) , если и только если ;
    (2) , если и только если ;
    (3) , если и только если ;
    (4) если , то (это принцип Дирихле для линейных операторов).
  • Множество упорядоченных базисов: . Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств .
  • Матрица линейн. оператора : . Теорема о матрице линейного оператора. Изоморфизм колец и вект. пр.-в .

    Теорема о матрице линейного оператора. Пусть — поле и — векторные пространства над полем ; тогда
    (1) если , , и , то , а также отображение
    — изоморфизм векторных пространств (и, значит, );
    (2) если , , и , то .

  • Матрица замены координат (): . Пример: (, ). Утверждение: , .
  • Преобразование столбца координат вектора: ; то же в покомпонентной записи: . Преобразование базиса: .
  • Преобразование матрицы линейного оператора: ; то же в покомпонентной записи (если ): .
2.1.4  Факторпространства, прямая сумма векторных пространств, двойственное пространство
  • Факторпростр.-во: с фактороперациями (). Теорема о гомоморфизме. Коразмерность: . Аффинные подпростр.-ва.

    Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .

  • Теорема о факторпространстве. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) если — базис пространства , — базис пространства и , то все классы смежности , где , попарно различны и
    вместе образуют базис пространства ; кроме того, если , то ;
    (2) если , — вект. пр.-во над и , то (это теорема о размерностях ядра и образа).
  • Прямая сумма : с покомпонентными операциями. Обобщение ( — мн.-во): .
  • Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем , и ; обозначим через
    отображение ; тогда
    (1) если и — базисы пространств соотв., то мн.-ва попарно не пересекаются и
    — базис пространства ; кроме того, если , то ;
    (2) следующие утверждения эквивалентны: (у1) , (у2) и
    (у3) ;
    (3) если , то в пункте (2) условие "" можно заменить на условие "";
    (4) если и , то (это формула Грассмана).
  • Внутренняя прямая сумма: . Лемма об инвариантном подпространстве и матрице эндоморфизма.

    Лемма об инвариантном подпространстве и матрице эндоморфизма. Пусть — поле, — векторное простр.-во над полем , ,
    , и (то есть -инвариантное подпространство), а также и ; тогда
    (1) существуют такие , , и , что ;
    (2) если , и , то существуют такие , и , что .

  • Двойственное пространство: . Двойственный базис: . Столбец . Строка координат ковектора.
  • Утверждение: . Изоморфизм . Преобразования при замене базиса: и , а также .
  • Двойственный оператор (): . Утверждение: пусть ; тогда — изоморфизм.

ТАБЛИЦА О КООРДИНАТАХ
(в таблице — поле, — векторное пространство над полем , и )
Инвариантный объектКоординаты
относительно базиса
Преобразование координат
при замене базиса
Пример использования
в геометрии и физике
вектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
скорость в точке
гладкого пути
на многообразии
ковектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
дифференциал в точке
гладкой функции (скалярного поля)
на многообразии
эндоморфизм
элемент пространства
(тензор типа над )

(это изоморфизм колец
и векторных пространств)
матричная запись:
покомпонентная запись:
дифференциал в неподвижной точке
гладкого отображения,
действующего из многообразия в себя

2.2  Линейные операторы (часть 1)

2.2.1  Элементарные преобразования, метод Гаусса, ранг линейного оператора
  • Элементарные матрицы: трансвекции , псевдоотражения .
  • Элемент. преобразования над строками 1-го и 2-го типов: и . Элемент. преобразования над столбцами.
  • Ступенч. и строго ступенч. по строкам и по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду. Приведение к строго ступенч. виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) множество ненулевых строк ступенчатой матрицы из пункта (1) — базис пространства ;
    (3) количество ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Метод Гаусса — приведение матрицы к строго ступенч. виду. Главные и свободные переменные. Фундаментальная система решений.
  • Ранг линейного оператора : . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) ранг матрицы равен рангу линейного оператора ;
    (2) и ;
    (3) для любых обратимых матриц и выполнено ;
    (4) существуют такие обратимые матрицы и , что ;
    (5) и (то есть ранг матрицы по столбцам равен рангу матрицы по строкам).
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда
    (1) и, если , то ;
    (2) , а также, если , то , и, если , то
    — класс смежности по подпростр.-ву (и, значит, аффинное подпростр.-во размерности ).
  • Теорема о приведении матрицы линейного оператора к почти единичному виду. Пусть — поле, — векторные пространства над полем ,
    и ; тогда существуют такие упорядоченные базисы и , что .
2.2.2  Полилинейные отображения, симметричные и антисимметричные полилинейные формы, формы объема
  • Пространства полилинейных отображений , . Пространства полилинейных форм , .
  • Пространства билинейных отображений , . Пространства билинейных форм , . Примеры полилин. форм.
  • Представление (действие) группы в пространстве : , где .
  • Пространство симметричных полилинейных форм: .
  • Пр.-во антисимм. полилин. форм: .
  • Лемма о симметричных и антисимметричных полилинейных формах. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) ;
    (2) и, если , то "" можно заменить на "";
    (3) .
  • Пр.-во форм объема: ; . Форма объема, связанная с базисом: .
  • Теорема о формах объема. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) и ;
    (2) для любых выполнено и для любых выполнено ;
    (3) множество — базис пространства (и, значит, );
    (4) для любых и выполнено .
2.2.3  Определитель линейного оператора, миноры матрицы, ориентация векторного пространства над
  • Определитель линейного оператора (): , где и . Корректность опр.-я.
  • Операторная и матричная теоремы о главных свойствах определителя. Специальная линейная группа: .

    Операторная теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых и выполнено ;
    (2) и отображение — гомоморфизм моноидов по умножению.

    Матричная теорема о главных свойствах определителя. Пусть — поле и ; тогда
    (1) для любых определитель матрицы равен определителю линейного оператора ;
    (2) и отображение — гомоморфизм моноидов по умножению.

  • Миноры — определители подматриц. Дополнит. миноры. Присоединенная матрица: дополнит. минор матрицы в позиции .
  • Теорема о присоединенной матрице. Пусть — поле, и ; тогда
    (1) для любых выполнено и для любых выполнено ;
    (2) для любых выполнено и для любых выполнено
    (это формулы разложения определителя матрицы по -й строке матрицы и по -му столбцу матрицы соответственно);
    (3) и, если , то .
  • Правило Крамера. Пусть — поле, , , и ; тогда .
  • Теорема о базисном миноре. Пусть — поле, и ; тогда равен максимальному среди всех таких чисел ,
    что в матрице существует такая подматрица размера , что (то есть ).
  • Отнош.-е одинаковой ориентированности (): . Лемма о биекции между классами базисов и классами форм объема.

    Лемма о биекции между классами базисов и классами форм объема. Пусть — векторное пространство над полем и ;
    рассмотрим действие группы на множестве по правилу и рассмотрим множество орбит
    относительно этого действия; тогда отображение определено корректно и является биекцией.

  • Ориентация вект. пространства : элемент множества (или соответствующий ему элемент множества ).