Алгебраические структуры 5 2015 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
 
(не показано 12 промежуточных версий этого же участника)
Строка 1: Строка 1:
<h2>Математическая модель пространства событий в специальной теории относительности</h2>
 
 
Наша цель — предложить математическую модель пространства событий в специальной теории относительности (далее: СТО) в рамках абсолютно<br>строгих (но относительно элементарных) алгебры и геометрии и изучить некоторые ее свойства.
 
 
<ul><li><i>Глобальная <math>4</math>-мерная система координат</i> на множестве <math>M</math> — биекция между множествами <math>M</math> и <math>\mathbb R^4</math>.
 
<li>Глобальные <math>4</math>-мерные системы координат <math>\alpha</math> и <math>\tilde\alpha</math> на множестве <math>M</math> <i>инерциально согласованы в смысле СТО</i>, если замена координат <math>\tilde\alpha\circ\alpha^{-1}</math> —<br>преобразование Пуанкаре (композиция специального ортохронного преобразования Лоренца и сдвига), то есть существуют такие <math>\Lambda_\alpha^\tilde\alpha\in\mathrm{SO}^+(1,3)</math><br>и <math>\xi_\alpha^\tilde\alpha\in\mathbb R^4</math>, что для любых <math>x\in\mathbb R^4</math> выполнено <math>\tilde\alpha(\alpha^{-1}(x))=\Lambda_\alpha^\tilde\alpha\!\cdot x+\xi_\alpha^\tilde\alpha</math>.
 
<li><u>Утверждение 1.</u> Отношение инерциальной согласованности в смысле СТО является отношением эквивалентности.
 
<li><i>Пространство событий в СТО</i> — множество <math>M</math>, на котором зафиксирован класс <math>\mathcal A_M</math> инерциальной согласованности в смысле СТО глобальных<br><math>4</math>-мерных систем координат.
 
<li><i>Инерциальная система координат</i> на пространстве событий <math>M</math> в СТО — глобальная <math>4</math>-мерная система координат, принадлежащая классу <math>\mathcal A_M</math>.</ul>
 
 
Из определения следует, что на пространстве событий в СТО задана более жесткая структура, чем структура <math>4</math>-мерного многообразия: на <math>4</math>-мерном<br>многообразии разрешены любые гладкие замены координат, а на пространстве событий в СТО, изучаемом в инерциальных системах координат,<br>разрешены только замены координат, являющиеся преобразованиями Пуанкаре. Для пространства событий в СТО определены все стандартные<br>конструкции дифференциальной геометрии, относящиеся к произвольным многообразиям: касательные пространства и кокасательные пространства,<br>тензорные расслоения и тензорные поля, симметричные и внешние формы и так далее (все эти конструкции инвариантны относительно любых гладких<br>замен координат и, в частности, инвариантны относительно замен координат, являющихся преобразованиями Пуанкаре). Кроме этих конструкций, для<br>пространства событий в СТО, изучаемого в инерциальных системах координат, определены специфические конструкции, связанные с тем, что на этом<br>пространстве рассматриваются только очень жесткие замены координат. Далее мы определяем эти конструкции.
 
 
Зафиксируем пространство событий <math>M</math> в СТО; его элементы для простоты будем называть точками (а не событиями).
 
 
<ul><li>Пусть <math>k\in\mathbb N</math>, <math>m_1,\ldots,m_k\in M</math>, <math>\tau_1,\ldots,\tau_k\in\mathbb R</math> и <math>\tau_1+\ldots+\tau_k=1</math>; <i>барицентрическая комбинация</i> <math>\tau_1m_1+\ldots+\tau_km_k</math> точек <math>m_1,\ldots,m_k</math> с<br>коэффициентами <math>\tau_1,\ldots,\tau_k</math> — точка <math>\alpha^{-1}(\tau_1\alpha(m_1)+\ldots+\tau_k\alpha(m_k))</math>, где <math>\alpha\in\mathcal A_M</math>.
 
<li><u>Утверждение 2.</u> Определение барицентрической комбинации точек не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
 
<li>Пусть <math>m,n\in M</math>; <i>прямая</i>, проходящая через точки <math>m</math> и <math>n</math>, — множество <math>\{(1-\tau)m+\tau\,n\mid\tau\in\mathbb R\}</math>.
 
<li>Пусть <math>m,n\in M</math>; <i>разность</i> <math>n-m</math> точек <math>m</math> и <math>n</math> — скорость в нуле пути <math>\biggl(\!\begin{align}\mathbb R&\to M\\\tau&\mapsto(1-\tau)m+\tau\,n\end{align}\!\biggr)</math> (это элемент касательного пространства <math>\mathrm T_mM</math>).
 
<li><u>Утверждение 3.</u> Для любых <math>m,n\in M</math> и <math>\alpha\in\mathcal A_M</math> выполнено <math>(n-m)^\alpha\!=\alpha(n)-\alpha(m)</math> (здесь <math>(n-m)^\alpha</math> — столбец координат вектора <math>n-m</math><br>относительно базиса <math>\Bigl\{\frac\partial{\partial x^0}(m),\frac\partial{\partial x^1}(m),\frac\partial{\partial x^2}(m),\frac\partial{\partial x^3}(m)\Bigr\}</math> пространства <math>\mathrm T_mM</math>, определяемого инерциальной системой координат <math>\alpha</math> на <math>M</math>).
 
<li>Пусть <math>m,n\in M</math> и <math>v\in\mathrm T_mM</math>; <i>сумма</i> <math>n+v</math> точки <math>n</math> и касательного вектора <math>v</math> — точка <math>\alpha^{-1}(\alpha(n)+v^\alpha)</math>, где <math>\alpha\in\mathcal A_M</math>.
 
<li><u>Утверждение 4.</u> Для любых <math>m\in M</math>, <math>v\in\mathrm T_mM</math> и <math>\alpha,\tilde\alpha\in\mathcal A_M</math> выполнено <math>v^\tilde\alpha\!=\Lambda_\alpha^\tilde\alpha\!\cdot v^\alpha</math>.
 
<li><u>Утверждение 5.</u> Определение суммы точки и касательного вектора не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
 
<li>Пусть <math>m\in M</math>; <i>скалярное произведение</i> <math>g(m)</math> на касательном пространстве <math>\mathrm T_mM</math> — невырожденная симметричная билинейная форма<br><math>\biggl(\!\begin{align}\mathrm T_mM\times\mathrm T_mM&\to\mathbb R\\(v,w)&\mapsto(v^\alpha)^\mathtt T\!\cdot\mathrm{diag}(1,-1,-1,-1)\cdot w^\alpha\end{align}\!\biggr)</math>, где <math>\alpha\in\mathcal A_M</math>.
 
<li><u>Утверждение 6.</u> Определение скалярного произведения на касательном простр.-ве не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
 
<li><u>Теорема об инвариантных биекциях и изоморфизмах.</u> Пусть <math>m,n\in M</math>; тогда<br>(1) отображения <math>\biggl(\!\begin{align}M&\to\mathrm T_mM\\n&\mapsto n-m\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm T_mM&\to M\\v&\mapsto m+v\end{align}\!\biggr)</math> суть взаимно обратные биекции;<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathrm T_nM\\v&\mapsto(n+v)-n\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm T_nM&\to\mathrm T_mM\\v&\mapsto(m+v)-m\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы псевдоевклидовых пространств.</ul>
 
 
Доказанные утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:<br>структурой аффинного пространства над каждым касательным пространством и структурой псевдориманова многообразия сигнатуры <math>(1,3)</math>, а также<br>на нем имеются параллельные переносы между любыми двумя касательными пространствами.
 
 
 
 
<!--<h2>Алгебраические структуры</h2>
 
 
 
<b>Лектор:</b> Евгений Евгеньевич Горячко.
 
<b>Лектор:</b> Евгений Евгеньевич Горячко.
  
Строка 43: Строка 11:
 
[[Медиа:Problems_11.11.pdf|<b>Файл с домашним заданием на 11-е ноября.</b>]]
 
[[Медиа:Problems_11.11.pdf|<b>Файл с домашним заданием на 11-е ноября.</b>]]
  
[https://docs.google.com/spreadsheets/d/1FFLPZXZwBFdEmG7NFQC856NN9ZCfcAthoX53pVq-Du8/htmlembed?widget=false<b>Таблица успеваемости студентов.</b>]
+
[https://docs.google.com/spreadsheets/d/1FFLPZXZwBFdEmG7NFQC856NN9ZCfcAthoX53pVq-Du8/htmlembed<b>Таблица успеваемости студентов.</b>]
  
 
<b>Все основные материалы курса имеются на следующих страницах:</b> http://mit.spbau.ru/courses/algstructures и<br>http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).
 
<b>Все основные материалы курса имеются на следующих страницах:</b> http://mit.spbau.ru/courses/algstructures и<br>http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).
  
__NOTOC__
+
<h2>Математическая модель пространства событий в специальной теории относительности</h2>
<h2>2&nbsp; Линейная алгебра</h2>
+
<table cellpadding="6" cellspacing="0">
 +
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Пропасть, зияющая между нашим повседневным мышлением и нормами математического рассуждения, должна оставаться<br>неприкосновенной, если мы хотим, чтобы математика выполняла свои функции.</td></tr><tr align="right"><td><i>Ю.И. Манин. Математика как метафора</i></td></tr></table></td></tr></table>
  
<h3>2.1&nbsp; Матрицы, базисы, координаты</h3>
+
Наша цель — предложить математическую модель пространства событий в специальной теории относительности (далее: СТО) в рамках современных<br>(но относительно элементарных) алгебры и геометрии и изучить некоторые ее свойства.
<h5>2.1.1&nbsp; Пространства матриц, столбцов, строк</h5>
+
<ul><li>Пространство матриц <math>\mathrm{Mat}(p,n,K)</math>. Пространство столбцов: <math>K^p=\mathrm{Mat}(p,1,K)</math>. Пространство строк: <math>{}^n\!K=\mathrm{Mat}(1,n,K)</math>.
+
<li>Матричные единицы: <math>(\mathrm{se}_i^j)^k_l=\delta_i^k\delta^j_l</math>. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{\mathrm{se}_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.
+
<li>Стандартный базис пространства <math>K^p</math>: <math>\{\mathrm{se}_i\mid i\in\{1,\ldots,p\}\}</math>. Стандартный базис пространства <math>{}^n\!K</math>: <math>\{\mathrm{se}^j\mid j\in\{1,\ldots,n\}\}</math>.
+
<li>Умножение матриц: <math>(b\cdot a)^i_k=\sum_{j=1}^pb^i_j\,a^j_k</math>. Внешняя ассоциативность умножения матриц. Кольцо <math>\mathrm{Mat}(n,K)</math>. Группа <math>\mathrm{GL}(n,K)</math>.
+
<li>Строки матрицы: <math>a^i=\mathrm{se}^i\cdot a</math>. Столбцы матрицы: <math>a_j=a\cdot\mathrm{se}_j</math>. Утверждение: <i><math>(b\cdot a)^i=b^i\cdot a=\sum_{j=1}^pb^i_j\,a^j</math> и <math>(b\cdot a)_k=b\cdot a_k=\sum_{j=1}^pa^j_k\,b_j</math></i>.
+
<li>След матрицы: <math>\mathrm{tr}\,a=\sum_{i=1}^na^i_i</math>. Утверждение: <i>пусть <math>a\in\mathrm{Mat}(p,n,K)</math> и <math>b\in\mathrm{Mat}(n,p,K)</math>; тогда <math>\mathrm{tr}(b\cdot a)=\mathrm{tr}(a\cdot b)</math></i>.
+
<li>Транспонирование матрицы: <math>(a^\mathtt T)^i_j=a^j_i</math>. Утверждение: <i>пусть <math>a\in\mathrm{Mat}(p,n,K)</math> и <math>b\in\mathrm{Mat}(r,p,K)</math>; тогда <math>(b\cdot a)^\mathtt T\!=a^\mathtt T\!\cdot b^\mathtt T</math></i>.</ul>
+
  
<h5>2.1.2&nbsp; Столбцы координат векторов и матрицы гомоморфизмов</h5>
+
<ul><li><i>Глобальная <math>4</math>-мерная система координат</i> на множестве <math>M</math> — биекция между множествами <math>M</math> и <math>\mathbb R^4</math>.
<ul><li>Упорядоченные базисы. Столбец координат вектора. Утверждение: <math>v=e\cdot v^e</math>. Изоморфизм векторных пространств <math>\biggl(\!\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}\!\biggr)</math>.
+
<li>Глобальные <math>4</math>-мерные системы координат <math>\alpha</math> и <math>\tilde\alpha</math> на множестве <math>M</math> <i>инерциально согласованы в смысле СТО</i>, если замена координат <math>\tilde\alpha\circ\alpha^{-1}</math> <br>преобразование Пуанкаре (композиция специального ортохронного преобразования Лоренца и сдвига), то есть существуют такие <math>\Lambda_\alpha^\tilde\alpha\in\mathrm{SO}^+(1,3)</math><br>и <math>\xi_\alpha^\tilde\alpha\in\mathbb R^4</math>, что для любых <math>x\in\mathbb R^4</math> выполнено <math>\tilde\alpha(\alpha^{-1}(x))=\Lambda_\alpha^\tilde\alpha\!\cdot x+\xi_\alpha^\tilde\alpha</math>.
<li>Матрица гомоморфизма: <math>(a_e^h)_j=a(e_j)^h</math>. Утверждение: <i><math>a(e)=h\cdot a_e^h</math> и <math>\forall\,v\in V\;\bigl(a(v)^h=a_e^h\cdot v^e\bigr)</math></i>. Утверждение: <math>(b\circ a)_e^g=b_f^g\cdot a_e^f</math>.
+
<li><u>Лемма 1.</u> Отношение инерциальной согласованности в смысле СТО является отношением эквивалентности.
<li>Изоморфизм векторных пространств <math>\biggl(\!\begin{align}\mathrm{Hom}(V,Y)&\to\mathrm{Mat}(p,n,K)\\a&\mapsto a_e^h\end{align}\!\biggr)</math>. Изоморфизм колец и векторных пространств <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\mathrm{Mat}(n,K)\\a&\mapsto a_e^e\end{align}\!\biggr)</math>.</ul>
+
<li><i>Пространство событий в СТО</i> — множество <math>M</math>, на котором зафиксирован класс <math>\mathcal A_M</math> инерциальной согласованности в смысле СТО глобальных<br><math>4</math>-мерных систем координат.
 +
<li><i>Инерциальная система координат</i> на пространстве событий <math>M</math> в СТО — глобальная <math>4</math>-мерная система координат, принадлежащая классу <math>\mathcal A_M</math>.</ul>
  
<h5>2.1.3&nbsp; Преобразования координат при замене базиса</h5>
+
Из определения следует, что на пространстве событий в СТО задана более жесткая структура, чем структура <math>4</math>-мерного многообразия: на <math>4</math>-мерном<br>многообразии разрешены любые гладкие замены координат, а на пространстве событий в СТО, изучаемом в инерциальных системах координат,<br>разрешены только замены координат, являющиеся преобразованиями Пуанкаре. Для пространства событий в СТО определены все стандартные<br>конструкции дифференциальной геометрии, относящиеся к произвольным многообразиям: касательные пространства и кокасательные пространства,<br>тензорные расслоения и тензорные поля, симметричные и внешние формы и так далее (все эти конструкции инвариантны относительно любых гладких<br>замен координат и, в частности, инвариантны относительно замен координат, являющихся преобразованиями Пуанкаре). Кроме этих конструкций, для<br>пространства событий в СТО, изучаемого в инерциальных системах координат, определены специфические конструкции, связанные с тем, что на этом<br>пространстве рассматриваются только очень жесткие замены координат. Далее мы определяем эти конструкции.
<ul><li>Матрица замены координат: <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math>. Матрица замены базиса: <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Утверждение: <i><math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e</math> и <math>\,\mathrm c_e^\tilde e=(\mathrm c_\tilde e^e)^{-1}</math></i>.
+
<li>Преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math>. Преобразование координат вектора: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math>. Покомпонентная запись: <math>v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k</math>.
+
<li>Преобразование координат гомоморфизма: <math>a_\tilde e^\tilde h=\mathrm c_h^\tilde h\cdot a_e^h\cdot\mathrm c_\tilde e^e</math>. Покомпонентная запись (если <math>a</math> — эндоморфизм): <math>a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</ul>
+
  
<h5>2.1.4&nbsp; Элементарные матрицы и приведение к ступенчатому виду</h5>
+
Всюду далее <math>M</math> — пространство событий в СТО.
<ul><li>Элементарные трансвекции <math>\{\mathrm{id}_n+c\,\mathrm{se}_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math> и псевдоотражения <math>\{\mathrm{id}_n+(c-1)\mathrm{se}_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.
+
<li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,\mathrm{se}_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)\mathrm{se}_i^i)\cdot a</math>.
+
<li>Элементарные преобразования над столбцами первого типа <math>a\mapsto a\cdot(\mathrm{id}_n+c\,\mathrm{se}_l^j)</math> и второго типа <math>a\mapsto a\cdot(\mathrm{id}_n+(c-1)\mathrm{se}_j^j)</math>.
+
<li>Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.
+
<p><u>Теорема о приведении матрицы к ступенчатому виду.</u> <i>Пусть <math>K</math> — поле, <math>p,n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда<br>(1) существуют такие <math>l\in\mathbb N_0</math> и элементарные матрицы <math>g_1,\ldots,g_l</math> размера <math>p\times p</math> над полем <math>K</math>, что <math>g_l\cdot\ldots\cdot g_1\cdot a</math> — ступенчатая матрица;<br>(2) число ненулевых строк ступенчатой матрицы из пункта (1) равно <math>\dim\,\langle a^1,\ldots,a^p\rangle</math> (и, значит, не зависит от матриц <math>g_1,\ldots,g_l</math>).</i></p>
+
<li>Нахождение базиса подпространства, порожденного конечным множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.</ul>
+
  
<h3>2.2&nbsp; Линейные операторы (часть 1)</h3>
+
<ul><li><u>Лемма 2.</u> Для любых <math>m\in M</math>, <math>v\in\mathrm T_mM</math> и <math>\alpha,\tilde\alpha\in\mathcal A_M</math> выполнено <math>v^\tilde\alpha\!=\Lambda_\alpha^\tilde\alpha\!\cdot v^\alpha</math> (здесь <math>v^\alpha</math> — столбец координат вектора <math>v</math> относительно базиса<br><math>\Bigl\{\frac\partial{\partial x^0}(m),\frac\partial{\partial x^1}(m),\frac\partial{\partial x^2}(m),\frac\partial{\partial x^3}(m)\Bigr\}</math> пространства <math>\mathrm T_mM</math>, определяемого инерциальной системой координат <math>\alpha</math> на <math>M</math>).
<h5>2.2.1&nbsp; Ядро и образ линейного оператора</h5>
+
<li>Пусть <math>m,n\in M</math> и <math>v\in\mathrm T_mM</math>; <i>сумма</i> <math>n+v</math> события <math>n</math> и касательного вектора <math>v</math> — событие <math>\alpha^{-1}(\alpha(n)+v^\alpha)</math>, где <math>\alpha\in\mathcal A_M</math>.
<ul><li>Отступление о свойствах базиса. Утверждение: <math>V\cong Y\,\Leftrightarrow\,\dim V=\dim Y</math>. Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U=\dim V<\infty</math>; тогда <math>U=V</math></i>.
+
<li><u>Лемма 3.</u> Определение суммы события и касательного вектора не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
<li>Ядро линейного оператора: <math>\mathrm{Ker}\,a=a^{-1}(0)\le V</math>. Образ линейного оператора: <math>\mathrm{Im}\,a\le Y</math>. Лемма о слоях гомоморфизма и следствие из нее.
+
<li>Пусть <math>m\in M</math>; <i>скалярное произведение</i> <math>g(m)</math> на касательном пространстве <math>\mathrm T_mM</math> — невырожденная симметричная билинейная форма<br><math>\biggl(\!\begin{align}\mathrm T_mM\times\mathrm T_mM&\to\mathbb R\\(v,w)&\mapsto(v^\alpha)^\mathtt T\!\cdot\mathrm{diag}(1,-1,-1,-1)\cdot w^\alpha\!\end{align}\!\biggr)</math>, где <math>\alpha\in\mathcal A_M</math>.
<p><u>Лемма о слоях гомоморфизма.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — вект. пр. над <math>K</math>, <math>a\in\mathrm{Hom}(V,Y)</math>, <math>y\in Y</math>, <math>v_0\in a^{-1}(y)</math>; тогда <math>a^{-1}(y)=v_0+\mathrm{Ker}\,a</math>.</i></p>
+
<li><u>Лемма 4.</u> Определение скалярного произведения на касательном пространстве не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
<p><u>Следствие из леммы о слоях гомоморфизма.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — вект. пр. над <math>K</math>, <math>a\in\mathrm{Hom}(V,Y)</math>; тогда <math>a\in\mathrm{Inj}(V,Y)\,\Leftrightarrow\,\mathrm{Ker}\,a=\{0\}</math>.</i></p>
+
<li>Пусть <math>k\in\mathbb N</math>, <math>m_1,\ldots,m_k\in M</math>, <math>\tau_1,\ldots,\tau_k\in\mathbb R</math> и <math>\tau_1+\ldots+\tau_k=1</math>; <i>барицентрическая комбинация</i> <math>\tau_1m_1+\ldots+\tau_km_k</math> событий <math>m_1,\ldots,m_k</math><br>с коэффициентами <math>\tau_1,\ldots,\tau_k</math> — событие <math>\alpha^{-1}(\tau_1\alpha(m_1)+\ldots+\tau_k\alpha(m_k))</math>, где <math>\alpha\in\mathcal A_M</math>.
<li><u>Теорема о размерностях ядра и образа линейного оператора.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math>,<br><math>\dim V<\infty</math> и <math>a\in\mathrm{Hom}(V,Y)</math>; тогда выполнено <math>\dim\mathrm{Ker}\,a+\dim\mathrm{Im}\,a=\dim V</math>.</i>
+
<li><u>Лемма 5.</u> Определение барицентрической комбинации событий не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
<li><u>Принцип Дирихле для линейных операторов.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>\dim V=\dim Y<\infty</math>;<br>тогда выполнено <math>\,\mathrm{Inj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Surj}(V,Y)\cap\mathrm{Hom}(V,Y)=\mathrm{Iso}(V,Y)</math>.</i></ul>
+
<li>Пусть <math>m,n\in M</math>; <i>прямая</i>, проходящая через события <math>m</math> и <math>n</math>, — множество <math>\{(1-\tau)m+\tau\,n\mid\tau\in\mathbb R\}</math>.
 +
<li>Пусть <math>m,n\in M</math>; <i>разность</i> <math>n-m</math> событий <math>m</math> и <math>n</math> — скорость в нуле пути <math>\biggl(\!\begin{align}\mathbb R&\to M\\\tau&\mapsto(1-\tau)m+\tau\,n\end{align}\!\biggr)</math> (это элемент касательного простр.-ва <math>\mathrm T_mM</math>).
 +
<li><u>Лемма 6.</u> Для любых <math>m,n\in M</math> и <math>\alpha\in\mathcal A_M</math> выполнено <math>(n-m)^\alpha\!=\alpha(n)-\alpha(m)</math>.
 +
<li><u>Теорема об инвариантных биекциях и изоморфизмах.</u> Пусть <math>m,n\in M</math>; тогда<br>(1) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to M\\v&\mapsto m+v\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}M&\to\mathrm T_mM\\n&\mapsto n-m\end{align}\!\biggr)</math> суть взаимно обратные биекции;<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathrm T_nM\\v&\mapsto(n+v)-n\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm T_nM&\to\mathrm T_mM\\v&\mapsto(m+v)-m\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы псевдоевклидовых пространств.</ul>
  
<h5>2.2.2&nbsp; Ранг линейного оператора</h5>
+
Написанные выше утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:<br>структурой аффинного пространства над каждым касательным пространством (для любых событий и касательных векторов определена их сумма) и<br>структурой псевдориманова многообразия сигнатуры <math>(1,3)</math> (для любых касательных векторов, принадлежащих одному касательному пространству,<br>определено их скалярное произведение), а также на нем имеется параллельный перенос между любыми двумя касательными пространствами.
<ul><li>Ранг линейного оператора: <math>\mathrm{rk}(a)=\dim\mathrm{Im}\,a</math>. Ранг матрицы (ранг по столбцам): <math>\mathrm{rk}(a)=\dim\,\langle a_1,\ldots,a_n\rangle</math>. Утверждение: <math>\mathrm{rk}(a)=\mathrm{rk}(a_e^h)</math>.
+
<li>Утверждение: <math>\mathrm{rk}(a)\le\min\{\dim V,\dim Y\}</math>. Утверждение: <i><math>a\in\mathrm{Inj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim V</math> и <math>a\in\mathrm{Surj}(V,Y)\,\Leftrightarrow\,\mathrm{rk}(a)=\dim Y</math></i>.
+
<li><u>Теорема о свойствах ранга.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда<br>(1) для любых матриц <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math> выполнено <math>\mathrm{rk}(g\cdot a\cdot g')=\mathrm{rk}(a)</math>;<br>(2) существуют такие матрицы <math>g\in\mathrm{GL}(p,K)</math> и <math>g'\in\mathrm{GL}(n,K)</math>, что <math>g\cdot a\cdot g'=\mathrm{se}_1^1+\mathrm{se}_2^2+\ldots+\mathrm{se}_{\mathrm{rk}(a)}^{\mathrm{rk}(a)}</math>;<br>(3) <math>\mathrm{rk}(a^\mathtt T)=\dim\,\langle a^1,\ldots,a^p\rangle</math> и <math>\,\mathrm{rk}(a)=\mathrm{rk}(a^\mathtt T)</math> (то есть ранг по столбцам равен рангу по строкам).</i></ul>
+
  
<h5>2.2.3&nbsp; Системы линейных уравнений</h5>
+
<h2>Дифференциальные операторы на многообразии <math>\mathbb R^3</math></h2>
<ul><li>Матричная запись систем. Однородные системы. Утверждение: <i>пусть <math>a\cdot v_0=y</math>; тогда <math>\{v\in K^n\mid a\cdot v=y\}=v_0+\{v\in K^n\mid a\cdot v=0\}</math></i>.
+
<li><u>Теорема Кронекера–Капелли.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math>, <math>a\in\mathrm{Mat}(p,n,K)</math> и <math>y\in K^p</math>; тогда <math>\exists\,v\in K^n\;\bigl(a\cdot v=y\bigr)\,\Leftrightarrow\,\mathrm{rk}(a)=\mathrm{rk}((a\;\,y))</math>.</i>
+
<li>Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства <math>\{v\in K^n\mid a\cdot v=0\}</math>.</ul>
+
  
<h3>2.3&nbsp; Конструкции над векторными пространствами</h3>
+
Рассмотрим множество <math>\mathbb R^3</math> как трехмерное риманово ориентированное многообразие, структура которого задана атласом, являющимся классом<br>согласованности системы координат <math>\mathrm{id}_{\mathbb R^3}</math> (эти координаты обозначаются <math>(x,y,z)</math>), метрической формой («метрическим тензором» или «квадратом<br>элемента длины») <math>\sigma=(\mathrm dx)^2+(\mathrm dy)^2+(\mathrm dz)^2</math> и формой объема («элементом объема») <math>vol=\mathrm dx\wedge\mathrm dy\wedge\mathrm dz</math> (в записи с тензорным произведением<br><math>\sigma=\mathrm dx\otimes\mathrm dx+\mathrm dy\otimes\mathrm dy+\mathrm dz\otimes\mathrm dz</math> и <math>vol=\mathrm dx\otimes\mathrm dy\otimes\mathrm dz+\mathrm dy\otimes\mathrm dz\otimes\mathrm dx+\mathrm dz\otimes\mathrm dx\otimes\mathrm dy-\mathrm dx\otimes\mathrm dz\otimes\mathrm dy-\mathrm dz\otimes\mathrm dy\otimes\mathrm dx-\mathrm dy\otimes\mathrm dx\otimes\mathrm dz</math>).
<h5>2.3.1&nbsp; Факторпространства и прямая сумма векторных пространств</h5>
+
<ul><li>Факторпространство: <math>V/U</math>. Утверждение: <i>пусть <math>U\le V</math>, <math>A</math> — базис в <math>U</math>, <math>B</math> — базис в <math>V</math>, <math>A\subseteq B</math>; тогда <math>\{b+U\mid b\in B\setminus A\}</math> — базис в <math>V/U</math></i>.
+
<li><u>Теорема о гомоморфизме.</u> <i>Пусть <math>K</math> — поле, <math>V,Y</math> — векторные пространства над полем <math>K</math> и <math>a\in\mathrm{Hom}(V,Y)</math>; тогда <math>V/\,\mathrm{Ker}\,a\cong\mathrm{Im}\,a</math>.</i>
+
<li>Прямая сумма векторных пространств: <math>U\oplus W</math>. Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
+
<p><u>Теорема о прямой сумме.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>U,W\le V</math>;<br>обозначим через <math>\mathrm{add}_{U,W}</math> отображение <math>\biggl(\!\begin{align}U\oplus W&\to V\\(u,w)&\mapsto u+w\end{align}\!\biggr)</math>; тогда<br>(1) <math>\mathrm{add}_{U,W}\in\mathrm{Hom}(U\oplus W,V)</math>, <math>\mathrm{Ker}\,\mathrm{add}_{U,W}\cong U\cap W</math> и <math>\,\mathrm{Im}\,\mathrm{add}_{U,W}=U+W</math>;<br>(2) <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\,</math><math>\forall\,v\in V\;\exists!\,u\in U,\,w\in W\;\bigl(v=u+w\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;U+W=V</math>;<br>(3) если <math>\dim V<\infty</math>, то <math>\mathrm{add}_{U,W}\in\mathrm{Iso}(U\oplus W,V)</math><math>\;\Leftrightarrow\;</math><math>U\cap W=\{0\}\;\land\;\dim U+\dim W=\dim V</math>;<br>(4) если <math>\dim U,\dim W<\infty</math>, то <math>\dim(U\cap W)+\dim(U+W)=\dim U+\dim W</math> (это формула Грассмана).</i></p>
+
<li>Подпространство, инвариантное относительно эндоморфизма: <math>a(U)\le U</math>. Матрица эндоморфизма, имеющего инвариантное подпространство.
+
<li>Матрица эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.</ul>
+
  
<h5>2.3.2&nbsp; Двойственное пространство</h5>
+
Пусть <math>(x^1,x^2,x^3)</math> — система координат на <math>\mathbb R^3</math>; тогда<br>(1) <math>\mathrm dx=\frac{\partial x}{\partial x^1}\,\mathrm dx^1+\frac{\partial x}{\partial x^2}\,\mathrm dx^2+\frac{\partial x}{\partial x^3}\,\mathrm dx^3</math>, <math>\mathrm dy=\frac{\partial y}{\partial x^1}\,\mathrm dx^1+\frac{\partial y}{\partial x^2}\,\mathrm dx^2+\frac{\partial y}{\partial x^3}\,\mathrm dx^3</math> и <math>\mathrm dz=\frac{\partial z}{\partial x^1}\,\mathrm dx^1+\frac{\partial z}{\partial x^2}\,\mathrm dx^2+\frac{\partial z}{\partial x^3}\,\mathrm dx^3</math>;<br>(2) <math>\sigma=(\mathrm dx)^2+(\mathrm dy)^2+(\mathrm dz)^2=\sigma_{1,1}(\mathrm dx^1)^2+\sigma_{2,2}(\mathrm dx^2)^2+\sigma_{3,3}(\mathrm dx^3)^2+2\,\sigma_{1,2}\,\mathrm dx^1\,\mathrm dx^2+2\,\sigma_{1,3}\,\mathrm dx^1\,\mathrm dx^3+2\,\sigma_{2,3}\,\mathrm dx^2\,\mathrm dx^3</math>, где для любых<br><math>j_1,j_2\in\{1,2,3\}</math> выполнено <math>\sigma_{j_1,j_2}\!=\frac{\partial x}{\partial x^{j_1}}\frac{\partial x}{\partial x^{j_2}}+\frac{\partial y}{\partial x^{j_1}}\frac{\partial y}{\partial x^{j_2}}+\frac{\partial z}{\partial x^{j_1}}\frac{\partial z}{\partial x^{j_2}}</math>;<br>(3) <math>vol=\mathrm dx\wedge\mathrm dy\wedge\mathrm dz=vol_{1,2,3}\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3</math>, где <math>vol_{1,2,3}</math> есть якобиан замены координат при переходе от коорд. <math>(x^1,x^2,x^3)</math> к коорд. <math>(x,y,z)</math>.
<ul><li>Двойственное пространство: <math>V^*\!=\mathrm{Hom}(V,K)</math>. Двойственный базис: <math>e^j(v)=(v^e)^j</math>. Утверждение: <math>\lambda=\!\sum_{j=1}^{\dim V}\!\lambda(e_j)e^j</math>. Столбец <math>e^*</math>.
+
<li>Строка координат ковектора. Утверждение: <math>\lambda=\lambda_e\cdot e^*</math>. Преобразования при замене базиса: <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math>, <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math> и <math>\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l</math>.
+
<li>Отождествление пространств <math>V</math> и <math>V^{**}</math> в случае конечномерного пространства <math>V</math> при помощи изоморфизма <math>\,v\mapsto\!\biggl(\!\begin{align}V^*\!&\to K\\\lambda&\mapsto\lambda(v)\end{align}\!\biggr)</math>.
+
<li>Сводная таблица о координатах. (В таблице <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math> и <math>e,\tilde e\in\mathrm{OB}(V)</math>.)</ul>
+
<p><table border cellpadding="3" cellspacing="0">
+
<tr><th>Инвариантный объект</th><th>Координаты<br>относительно базиса</th><th>Преобразование координат<br>при замене базиса</th><th>Пример использования<br>в геометрии и физике</th></tr>
+
<tr align="center"><td>вектор <math>v</math> —<br>элемент пространства <math>V</math><br>(тензор типа <math>(1,0)</math> над <math>V</math>)</td>
+
<td><math>\begin{align}V&\to K^n\\v&\mapsto v^e\end{align}</math><br>(это изоморфизм<br>векторных пространств)</td>
+
<td><table align="center" cellpadding="0" cellspacing="3"><tr align="center"><td>матричная запись: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math></td></tr>
+
<tr align="center"><td>покомпонентная запись:<br><math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(v^\tilde i=\sum_{k=1}^n(e_k)^\tilde i\,v^k\Bigr)</math></td></tr>
+
<tr align="center"><td>преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math></td></tr></table></td>
+
<td>скорость в точке<br>гладкого пути<br>на многообразии</td></tr>
+
<tr align="center"><td>ковектор <math>\lambda</math> —<br>элемент пространства <math>V^*</math><br>(тензор типа <math>(0,1)</math> над <math>V</math>)</td>
+
<td><math>\begin{align}V^*\!&\to{}^n\!K\\\lambda&\mapsto\lambda_e\end{align}</math><br>(это изоморфизм<br>векторных пространств)</td>
+
<td><table align="center" cellpadding="0" cellspacing="3"><tr align="center"><td>матричная запись: <math>\lambda_\tilde e=\lambda_e\cdot\mathrm c_\tilde e^e</math></td></tr>
+
<tr align="center"><td>покомпонентная запись:<br><math>\forall\,j\in\{1,\ldots,n\}\;\Bigl(\lambda_\tilde j=\sum_{l=1}^n(e_\tilde j)^l\,\lambda_l\Bigr)</math></td></tr>
+
<tr align="center"><td>преобразование базиса: <math>\tilde e^*\!=\mathrm c_e^\tilde e\cdot e^*</math></td></tr></table></td>
+
<td>дифференциал в точке<br>гладкой функции (скалярного поля)<br>на многообразии</td></tr>
+
<tr align="center"><td>эндоморфизм <math>a</math> —<br>элемент пространства <math>\mathrm{End}(V)</math><br>(тензор типа <math>(1,1)</math> над <math>V</math>)</td>
+
<td><math>\begin{align}\mathrm{End}(V)&\to\mathrm{Mat}(n,K)\\a&\mapsto a_e^e\end{align}</math><br>(это изоморфизм колец<br>и векторных пространств)</td>
+
<td><table align="center" cellpadding="0" cellspacing="3"><tr align="center"><td>матричная запись: <math>a_\tilde e^\tilde e=\mathrm c_e^\tilde e\cdot a_e^e\cdot\mathrm c_\tilde e^e</math></td></tr>
+
<tr align="center"><td>покомпонентная запись:<br><math>\forall\,i,j\in\{1,\ldots,n\}\;\Bigl(a^\tilde i_\tilde j=\sum_{k=1}^n\sum_{l=1}^n(e_k)^\tilde i(e_\tilde j)^l\,a_l^k\Bigr)</math></td></tr></table></td>
+
<td>дифференциал в неподвижной точке<br>гладкого отображения,<br>действующего из многообразия в себя</td></tr></table></p>
+
  
<h3>2.4&nbsp; Полилинейные отображения, формы объема, определитель</h3>
+
Пусть <math>(x^1,x^2,x^3)</math> — ортогональная положительно ориентированная система координат на <math>\mathbb R^3</math> (то есть <math>\sigma_{1,2}=\sigma_{1,3}=\sigma_{2,3}=0</math> и <math>vol_{1,2,3}\!>0</math>); тогда<br><math>\sigma=\sigma_{1,1}(\mathrm dx^1)^2+\sigma_{2,2}(\mathrm dx^2)^2+\sigma_{3,3}(\mathrm dx^3)^2</math> и <math>vol=vol_{1,2,3}\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3</math>, где <math>vol_{1,2,3}\!=\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}\,\sigma_{3,3}}</math>.
<h5>2.4.1&nbsp; Отступление о симметрических группах</h5>
+
<ul><li>Симметрическая группа: <math>\mathrm S_n=\mathrm S(\{1,\ldots,n\})</math>. Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
+
<li>Утверждение: <math>(i_1\;\ldots\;i_l\;\,k)\circ(k\;\,j_1\;\ldots\;j_m)=(i_1\;\ldots\;i_l\;\,k\;\,j_1\;\ldots\;j_m)</math>. Утверждение: <math>u\circ(i_1\;\ldots\;i_l)\circ u^{-1}=(u(i_1)\;\ldots\;u(i_l))</math>.
+
<li><u>Теорема о классах сопряженности в симметрических группах.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>s,\breve s\in\mathrm S_n</math>; тогда перестановки <math>s</math> и <math>\breve s</math> сопряжены, если и только<br>если (неупорядоченные) наборы длин циклов перестановок <math>s</math> и <math>\breve s</math> равны.</i>
+
<li>Транспозиции <math>\{(i\;\,j)\mid i,j\in\{1,\ldots,n\},\,i<j\}</math> и фундаментальные транспозиции <math>\{(i\;\,i+1)\mid i\in\{1,\ldots,n-1\}\}</math>. Число циклов <math>\kappa(u)</math>.
+
<li><u>Лемма об умножении на транспозицию.</u> <i>Пусть <math>n\in\mathbb N\!\setminus\!\{1\}</math>, <math>u\in\mathrm S_n</math>, <math>i,j\in\{1,\ldots,n\}</math> и <math>i<j</math>; тогда<br>(1) если числа <math>i</math> и <math>j</math> принадлежат одному циклу в перестановке <math>u</math>, то <math>\kappa(u\circ(i\;\,j))=\kappa(u)+1</math>;<br>(2) если числа <math>i</math> и <math>j</math> принадлежат разным циклам в перестановке <math>u</math>, то <math>\kappa(u\circ(i\;\,j))=\kappa(u)-1</math>.</i>
+
<li><u>Теорема о разложении перестановки в произведение транспозиций.</u> <i>Пусть <math>n\in\mathbb N_0</math> и <math>u\in\mathrm S_n</math>; обозначим через <math>l</math> число <math>n-\kappa(u)</math>; тогда<br>(1) существуют такие транспозиции <math>u_1,\ldots,u_l\in\mathrm S_n</math>, что <math>u=u_1\circ\ldots\circ u_l</math>;<br>(2) для любых <math>t\in\mathbb N_0</math> из существования таких транспозиций <math>u_1,\ldots,u_t\in\mathrm S_n</math>, что <math>u=u_1\circ\ldots\circ u_t</math>, следует, что <math>t\ge l</math> и <math>t\equiv l\;(\mathrm{mod}\;2)</math>.</i>
+
<li>Знак перестановки: <math>\mathrm{sgn}(u)=(-1)^{n-\kappa(u)}</math>. Утверждение: <i><math>\mathrm{sgn}</math> — гомоморфизм групп</i>. Знакопеременная группа: <math>\mathrm A_n=\{u\in\mathrm S_n\!\mid\mathrm{sgn}(u)=1\}\trianglelefteq\mathrm S_n</math>.</ul>
+
  
<h5>2.4.2&nbsp; Полилинейные отображения и формы объема</h5>
+
<ul><li>Зафиксируем ортогональную положительно ориентированную систему координат <math>(x^1,x^2,x^3)</math> на <math>\mathbb R^3</math> и обозначим через <math>e_1</math>, <math>e_2</math> и <math>e_3</math> векторные<br>поля <math>\frac1{\!\sqrt{\sigma_{1,1}}}\frac{\partial}{\partial x^1}</math>, <math>\frac1{\!\sqrt{\sigma_{2,2}}}\frac{\partial}{\partial x^2}</math> и <math>\frac1{\!\sqrt{\sigma_{3,3}}}\frac{\partial}{\partial x^3}</math> соответственно (они образуют ортонормированный базис в каждом касательном пространстве); тогда<br><math>e^1\!=\!\sqrt{\sigma_{1,1}}\,\mathrm dx^1</math>, <math>e^2\!=\!\sqrt{\sigma_{2,2}}\,\mathrm dx^2</math> и <math>e^3\!=\!\sqrt{\sigma_{3,3}}\,\mathrm dx^3</math>, а также <math>\sigma=(e^1)^2+(e^2)^2+(e^3)^2</math> и <math>vol=e^1\!\wedge e^2\!\wedge e^3</math>.
<ul><li>Пространства полилинейных отображений <math>\mathrm{Multi}(V_1,\ldots,V_k,Y)</math>, <math>\mathrm{Multi}_k(V,Y)</math> и полилинейных форм <math>\mathrm{Multi}(V_1,\ldots,V_k,K)</math>, <math>\mathrm{Multi}_kV</math>.
+
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(\mathbb R^3)</math>; тогда<br>(1) <math>{\downarrow}\,v=v^1e^1+v^2e^2+v^3e^3\!=\!\sqrt{\sigma_{1,1}}\,v^1\mathrm dx^1+\!\sqrt{\sigma_{2,2}}\,v^2\mathrm dx^2+\!\sqrt{\sigma_{3,3}}\,v^3\mathrm dx^3</math>;<br>(2) <math>*\,({\downarrow}\,v)=v^1e^2\!\wedge e^3-v^2e^1\!\wedge e^3+v^3e^1\!\wedge e^2\!=\!\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\mathrm dx^2\!\wedge\mathrm dx^3-\!\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\mathrm dx^1\!\wedge\mathrm dx^3+\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\mathrm dx^1\!\wedge\mathrm dx^2</math>.
<li>Пространства билинейных отображений <math>\mathrm{Bi}(V_1,V_2,Y)</math>, <math>\mathrm{Bi}(V,Y)</math> и билинейных форм <math>\mathrm{Bi}(V_1,V_2,K)</math>, <math>\mathrm{Bi}(V)</math>. Примеры полилинейных форм.
+
<li>Пусть <math>f\in\mathrm{Func}(\mathbb R^3)</math>; найдем градиент функции <math>f</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\nabla f={\uparrow}\,(\mathrm df)={\uparrow}\,(\partial_1f\;\mathrm dx^1+\partial_2f\;\mathrm dx^2+\partial_3f\;\mathrm dx^3)=\frac1{\!\sqrt{\sigma_{1,1}}}\,\partial_1f\;e_1+\frac1{\!\sqrt{\sigma_{2,2}}}\,\partial_2f\;e_2+\frac1{\!\sqrt{\sigma_{3,3}}}\,\partial_3f\;e_3</math>.
<li>Пространство симметричных полилинейных форм <math>\mathrm{SMulti}_kV</math>. Пространство антисимметричных полилинейных форм <math>\mathrm{AMulti}_kV</math>.
+
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(\mathbb R^3)</math>; найдем дивергенцию векторного поля <math>v</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,({\downarrow}\,v)=*\,\mathrm d\bigl(\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\mathrm dx^2\!\wedge\mathrm dx^3-\!\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\mathrm dx^1\!\wedge\mathrm dx^3+\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\mathrm dx^1\!\wedge\mathrm dx^2\bigr)=</math><br><math>=*\Bigl(\bigl(\partial_1\bigl(\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\bigr)+\partial_2\bigl(\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\bigr)+\partial_3\bigl(\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\bigr)\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3\Bigr)=</math><br><math>=\frac1{\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}\,\sigma_{3,3}}}\bigl(\partial_1\bigl(\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\bigr)+\partial_2\bigl(\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\bigr)+\partial_3\bigl(\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\bigr)\bigr)</math>.
<li><u>Лемма об антисимметричных формах.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>k\in\mathbb N_0</math> и <math>\omega\in\mathrm{Multi}_kV</math>; тогда<br>следующие условия эквивалентны (если <math>\mathrm{char}\,K=2</math>, то исключаются импликации (2)<math>\;\Rightarrow\,</math>(1) и (3)<math>\;\Rightarrow\,</math>(1)):<br>(1) <math>\omega\in\mathrm{AMulti}_kV</math>;<br>(2) для любых <math>v_1,\ldots,v_k\in V</math> и таких <math>u\in\mathrm S_k</math>, что <math>u</math> — транспозиция, выполнено <math>\omega(v_{u(1)},\ldots,v_{u(k)})=-\omega(v_1,\ldots,v_k)</math>;<br>(3) для любых <math>v_1,\ldots,v_k\in V</math> и <math>u\in\mathrm S_k</math> выполнено <math>\omega(v_{u(1)},\ldots,v_{u(k)})=\mathrm{sgn}(u)\,\omega(v_1,\ldots,v_k)</math>.</i>
+
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(\mathbb R^3)</math>; найдем ротор векторного поля <math>v</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\mathrm{rot}\,v={\uparrow}\,(*\,\mathrm d({\downarrow}\,v))={\uparrow}\,\bigl({*}\,\mathrm d\bigl(\sqrt{\sigma_{1,1}}\,v^1\mathrm dx^1+\!\sqrt{\sigma_{2,2}}\,v^2\mathrm dx^2+\!\sqrt{\sigma_{3,3}}\,v^3\mathrm dx^3\bigr)\bigr)=</math><br><math>={\uparrow}\Bigl({*}\Bigl(\!\bigl(\partial_2\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)\!\bigr)\,\mathrm dx^2\!\wedge\mathrm dx^3+\bigl(\partial_1\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)\!\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^3+\bigl(\partial_1\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)-\partial_2\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)\!\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^2\Bigr)\!\Bigr)\!=</math><br><math>=\frac{\partial_2\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)}{\sqrt{\sigma_{2,2}\,\sigma_{3,3}}}\,e_1-\frac{\partial_1\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)}{\sqrt{\sigma_{1,1}\,\sigma_{3,3}}}\,e_2+\frac{\partial_1\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)-\partial_2\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)}{\sqrt{\sigma_{1,1}\,\sigma_{2,2}}}\,e_3</math>.
<li>Пространство форм объема <math>\mathrm{AMulti}_nV</math> (<math>n=\dim V</math>). Форма объема, связанная с базисом: <math>\mathrm{vol}^e(v_1,\ldots,v_n)=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,(v_1^e)^{u(1)}\!\ldots(v_n^e)^{u(n)}</math>.
+
<li>Пусть <math>f\in\mathrm{Func}(\mathbb R^3)</math>; найдем лапласиан функции <math>f</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\Delta f=\mathrm{div}(\nabla f)=\mathrm{div}\Bigl(\frac1{\!\sqrt{\sigma_{1,1}}}\,\partial_1f\;e_1+\frac1{\!\sqrt{\sigma_{2,2}}}\,\partial_2f\;e_2+\frac1{\!\sqrt{\sigma_{3,3}}}\,\partial_3f\;e_3\Bigr)\!=</math><br><math>=\frac1{\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}\,\sigma_{3,3}}}\Bigl(\partial_1\Bigl(\frac{\!\sqrt{\sigma_{2,2}\,\sigma_{3,3}}}{\sqrt{\sigma_{1,1}}}\,\partial_1f\Bigr)+\partial_2\Bigl(\frac{\!\sqrt{\sigma_{1,1}\,\sigma_{3,3}}}{\sqrt{\sigma_{2,2}}}\,\partial_2f\Bigr)+\partial_3\Bigl(\frac{\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}}}{\sqrt{\sigma_{3,3}}}\,\partial_3f\Bigr)\!\Bigr)</math>.</ul>
<li><u>Теорема о формах объема.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над <math>K</math>, <math>\dim V<\infty</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> и <math>\omega\in\mathrm{AMulti}_nV</math> выполнено <math>\omega=\omega(e_1,\ldots,e_n)\,\mathrm{vol}^e</math>;<br>(2) для любых <math>e\in\mathrm{OB}(V)</math> множество <math>\{\mathrm{vol}^e\}</math> — базис пространства <math>\,\mathrm{AMulti}_nV</math>;<br>(3) для любых <math>v_1,\ldots,v_n\in V</math> и <math>\omega\in\mathrm{AMulti}_nV\!\setminus\!\{0\}</math> выполнено <math>(v_1,\ldots,v_n)\in\mathrm{OB}(V)\,\Leftrightarrow\,\omega(v_1,\ldots,v_n)\ne0</math>.</i></ul>
+
  
<h5>2.4.3&nbsp; Определитель линейного оператора</h5>
+
Нетривиальными примерами ортогональной положительно ориентированной системы координат на <math>\mathbb R^3</math> (за исключением множества меры нуль)<br>являются цилиндрическая система координат <math>(\rho,\varphi,z)</math> и сферическая система координат <math>(r,\theta,\varphi)</math>. Ниже найдены функции <math>\sigma_{1,1}</math>, <math>\sigma_{2,2}</math>, <math>\sigma_{3,3}</math> для этих<br>систем координат; используя формулы для этих функций и приведенные выше формулы для дифференциальных операторов, можно найти формулы<br>для рассматриваемых дифференциальных операторов в цилиндрической и сферической системах координат.
<ul><li>Определитель линейного оператора: <math>\omega(a(v_1),\ldots,a(v_n))=\det a\cdot\omega(v_1,\ldots,v_n)</math>, где <math>\omega\in\mathrm{AMulti}_nV\!\setminus\!\{0\}</math>. Корректность определения.
+
<li><u>Теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) <math>\mathrm{GL}(V)=\{a\in\mathrm{End}(V)\mid\det a\ne0\}</math> (напоминание: <math>\mathrm{GL}(V)=\mathrm{End}(V)^\times</math>);<br>(2) для любых <math>a,b\in\mathrm{End}(V)</math> выполнено <math>\det(a\circ b)=\det a\cdot\det b</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{GL}(V)&\to K^\times\\a&\mapsto\det a\end{align}\!\biggr)</math> определено корректно и является гомоморфизмом групп).</i>
+
<li>Определитель матрицы: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\ldots a^{u(n)}_n</math>. Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math>; тогда <math>\mathrm{vol}^e(v_1,\ldots,v_n)=\det\!\bigl(v_1^e\;\ldots\;v_n^e\bigr)</math></i>.
+
<li><u>Лемма об определителе оператора и определителе матрицы.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда <math>\det a=\mathrm{vol}^e(a(e_1),\ldots,a(e_n))=\det a_e^e</math>.</i>
+
<li>Утверждение: <i><math>\det a=\det a^\mathtt T</math> и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков</i>.
+
<li>Специальные линейные группы: <math>\mathrm{SL}(V)=\{a\in\mathrm{GL}(V)\mid\det a=1\}\trianglelefteq\mathrm{GL}(V)</math> и <math>\mathrm{SL}(n,K)=\{a\in\mathrm{GL}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>.</ul>
+
  
<h5>2.4.4&nbsp; Миноры матрицы и присоединенная матрица</h5>
+
<ul><li>Функции <math>\sigma_{1,1}</math>, <math>\sigma_{2,2}</math>, <math>\sigma_{3,3}</math> для цилиндрической системы координат:<br><math>\sigma_{1,1}=\Bigl(\frac{\partial(\rho\cos\varphi)}{\partial\rho}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(\rho\sin\varphi)}{\partial\rho}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial\rho}\Bigr)^{\!2}\!=1</math>, <math>\sigma_{2,2}=\Bigl(\frac{\partial(\rho\cos\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(\rho\sin\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial\varphi}\Bigr)^{\!2}\!=\rho^2</math>,<br><math>\sigma_{3,3}=\Bigl(\frac{\partial(\rho\cos\varphi)}{\partial z}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(\rho\sin\varphi)}{\partial z}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial z}\Bigr)^{\!2}\!=1</math>.
<ul><li>Миноры. Дополнительные миноры. Присоединенная матрица: <math>\mathrm{adj}(a)^i_j=(-1)^{i+j}</math><math>\bigl(</math>дополнительный минор матрицы <math>a</math> в позиции <math>(j,i)</math><math>\bigr)</math>.
+
<li>Функции <math>\sigma_{1,1}</math>, <math>\sigma_{2,2}</math>, <math>\sigma_{3,3}</math> для сферической системы координат:<br><math>\sigma_{1,1}=\Bigl(\frac{\partial(r\sin\theta\cos\varphi)}{\partial r}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\sin\theta\sin\varphi)}{\partial r}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\cos\theta)}{\partial r}\Bigr)^{\!2}\!=1</math>, <math>\sigma_{2,2}=\Bigl(\frac{\partial(r\sin\theta\cos\varphi)}{\partial\theta}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\sin\theta\sin\varphi)}{\partial\theta}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\cos\theta)}{\partial\theta}\Bigr)^{\!2}\!=r^2</math>,<br><math>\sigma_{3,3}=\Bigl(\frac{\partial(r\sin\theta\cos\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\sin\theta\sin\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\cos\theta)}{\partial\varphi}\Bigr)^{\!2}\!=r^2\sin^2\theta</math>.</ul>
<li><u>Теорема о присоединенной матрице.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,K)</math>; тогда<br>(1) <math>\forall\,i,k\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_k=\det a\cdot\delta^i_k\Bigr)</math> и <math>\forall\,j,l\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^l_i\,a^i_j=\det a\cdot\delta^l_j\Bigr)</math> (в частности,<br>при <math>i=k</math> имеем <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_i=\det a\Bigr)</math> и при <math>j=l</math> имеем <math>\forall\,j\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^j_i\,a^i_j=\det a\Bigr)</math>;<br>это формулы разложения определителя матрицы <math>a</math> по <math>i</math>-й строке матрицы <math>a</math> и по <math>j</math>-му столбцу матрицы <math>a</math> соответственно);<br>(2) <math>a\cdot\mathrm{adj}(a)=\mathrm{adj}(a)\cdot a=\det a\cdot\mathrm{id_n}</math> и, если <math>a\in\mathrm{GL}(n,K)</math>, то <math>a^{-1}=\frac1{\det a}\,\mathrm{adj}(a)</math>.</i>
+
<li><u>Правило Крамера.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math>, <math>a\in\mathrm{GL}(n,K)</math>, <math>y\in K^n</math> и <math>j\in\{1,\ldots,n\}</math>; тогда <math>(a^{-1}\!\cdot y)^j=\frac{\det\!\bigl(a_1\;\ldots\;a_{j-1}\;\,y\;\,a_{j+1}\;\ldots\;a_n\bigr)}{\det a}</math>.</i>
+
<li><u>Теорема о базисном миноре.</u> <i>Пусть <math>K</math> — поле, <math>n,p\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(p,n,K)</math>; тогда <math>\mathrm{rk}(a)</math> равен максимальному среди всех таких чисел<br><math>m\in\mathbb N_0</math>, что в матрице <math>a</math> существует такая подматрица <math>a'</math> размера <math>m\times m</math>, что <math>\det a'\ne0</math> (то есть <math>a'\in\mathrm{GL}(m,K)</math>).</i></ul>-->
+

Текущая версия на 17:00, 21 июня 2017

Лектор: Евгений Евгеньевич Горячко.

Преподаватель практики у подгруппы №1: Евгений Евгеньевич Горячко.

Список подгруппы №1 на практике: Иван Абрамов, Евгений Акимов, Роман Васильев, Марк Геллер, Сергей Голованов,
Андрей Крутиков, Рауф Курбанов, Антон Мордберг, Кирилл Пилюгин, Дмитрий Саввинов, Андрей Серебро, Алексей Степанов,
Ильнур Шугаепов, Наталья Ялышева, а также Иван Дмитриевский и Ирина Щукина.

Преподаватель практики у подгруппы №2: Софья Сергеевна Афанасьева.

Список подгруппы №2 на практике: Дмитрий Байдин, Виталий Бибаев, Фёдор Бочаров, Артём Бутомов, Святослав Власов,
Шамиль Гарифуллин, Егор Горбунов, Эдгар Жаворонков, Никита Иванов, Сергей Козлов, Татьяна Кузина, Михаил Митрофанов,
Семён Поляков, Владислав Саенко, Леонид Сташевский, Константин Чаркин.

Файл с домашним заданием на 11-е ноября.

Таблица успеваемости студентов.

Все основные материалы курса имеются на следующих страницах: http://mit.spbau.ru/courses/algstructures и
http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).

Математическая модель пространства событий в специальной теории относительности

Пропасть, зияющая между нашим повседневным мышлением и нормами математического рассуждения, должна оставаться
неприкосновенной, если мы хотим, чтобы математика выполняла свои функции.
Ю.И. Манин. Математика как метафора

Наша цель — предложить математическую модель пространства событий в специальной теории относительности (далее: СТО) в рамках современных
(но относительно элементарных) алгебры и геометрии и изучить некоторые ее свойства.

  • Глобальная -мерная система координат на множестве — биекция между множествами и .
  • Глобальные -мерные системы координат и на множестве инерциально согласованы в смысле СТО, если замена координат
    преобразование Пуанкаре (композиция специального ортохронного преобразования Лоренца и сдвига), то есть существуют такие
    и , что для любых выполнено .
  • Лемма 1. Отношение инерциальной согласованности в смысле СТО является отношением эквивалентности.
  • Пространство событий в СТО — множество , на котором зафиксирован класс инерциальной согласованности в смысле СТО глобальных
    -мерных систем координат.
  • Инерциальная система координат на пространстве событий в СТО — глобальная -мерная система координат, принадлежащая классу .

Из определения следует, что на пространстве событий в СТО задана более жесткая структура, чем структура -мерного многообразия: на -мерном
многообразии разрешены любые гладкие замены координат, а на пространстве событий в СТО, изучаемом в инерциальных системах координат,
разрешены только замены координат, являющиеся преобразованиями Пуанкаре. Для пространства событий в СТО определены все стандартные
конструкции дифференциальной геометрии, относящиеся к произвольным многообразиям: касательные пространства и кокасательные пространства,
тензорные расслоения и тензорные поля, симметричные и внешние формы и так далее (все эти конструкции инвариантны относительно любых гладких
замен координат и, в частности, инвариантны относительно замен координат, являющихся преобразованиями Пуанкаре). Кроме этих конструкций, для
пространства событий в СТО, изучаемого в инерциальных системах координат, определены специфические конструкции, связанные с тем, что на этом
пространстве рассматриваются только очень жесткие замены координат. Далее мы определяем эти конструкции.

Всюду далее — пространство событий в СТО.

  • Лемма 2. Для любых , и выполнено (здесь — столбец координат вектора относительно базиса
    пространства , определяемого инерциальной системой координат на ).
  • Пусть и ; сумма события и касательного вектора — событие , где .
  • Лемма 3. Определение суммы события и касательного вектора не зависит от выбора инерциальной системы координат на .
  • Пусть ; скалярное произведение на касательном пространстве — невырожденная симметричная билинейная форма
    , где .
  • Лемма 4. Определение скалярного произведения на касательном пространстве не зависит от выбора инерциальной системы координат на .
  • Пусть , , и ; барицентрическая комбинация событий
    с коэффициентами — событие , где .
  • Лемма 5. Определение барицентрической комбинации событий не зависит от выбора инерциальной системы координат на .
  • Пусть ; прямая, проходящая через события и , — множество .
  • Пусть ; разность событий и — скорость в нуле пути (это элемент касательного простр.-ва ).
  • Лемма 6. Для любых и выполнено .
  • Теорема об инвариантных биекциях и изоморфизмах. Пусть ; тогда
    (1) отображения и суть взаимно обратные биекции;
    (2) отображения и суть взаимно обратные изоморфизмы псевдоевклидовых пространств.

Написанные выше утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:
структурой аффинного пространства над каждым касательным пространством (для любых событий и касательных векторов определена их сумма) и
структурой псевдориманова многообразия сигнатуры (для любых касательных векторов, принадлежащих одному касательному пространству,
определено их скалярное произведение), а также на нем имеется параллельный перенос между любыми двумя касательными пространствами.

Дифференциальные операторы на многообразии

Рассмотрим множество как трехмерное риманово ориентированное многообразие, структура которого задана атласом, являющимся классом
согласованности системы координат (эти координаты обозначаются ), метрической формой («метрическим тензором» или «квадратом
элемента длины») и формой объема («элементом объема») (в записи с тензорным произведением
и ).

Пусть — система координат на ; тогда
(1) , и ;
(2) , где для любых
выполнено ;
(3) , где есть якобиан замены координат при переходе от коорд. к коорд. .

Пусть — ортогональная положительно ориентированная система координат на (то есть и ); тогда
и , где .

  • Зафиксируем ортогональную положительно ориентированную систему координат на и обозначим через , и векторные
    поля , и соответственно (они образуют ортонормированный базис в каждом касательном пространстве); тогда
    , и , а также и .
  • Пусть ; тогда
    (1) ;
    (2) .
  • Пусть ; найдем градиент функции в координатах :
    .
  • Пусть ; найдем дивергенцию векторного поля в координатах :


    .
  • Пусть ; найдем ротор векторного поля в координатах :


    .
  • Пусть ; найдем лапласиан функции в координатах :

    .

Нетривиальными примерами ортогональной положительно ориентированной системы координат на (за исключением множества меры нуль)
являются цилиндрическая система координат и сферическая система координат . Ниже найдены функции , , для этих
систем координат; используя формулы для этих функций и приведенные выше формулы для дифференциальных операторов, можно найти формулы
для рассматриваемых дифференциальных операторов в цилиндрической и сферической системах координат.

  • Функции , , для цилиндрической системы координат:
    , ,
    .
  • Функции , , для сферической системы координат:
    , ,
    .