Алгебраические структуры 5 2015 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
 
(не показаны 53 промежуточные версии этого же участника)
Строка 11: Строка 11:
 
[[Медиа:Problems_11.11.pdf|<b>Файл с домашним заданием на 11-е ноября.</b>]]
 
[[Медиа:Problems_11.11.pdf|<b>Файл с домашним заданием на 11-е ноября.</b>]]
  
[https://docs.google.com/spreadsheets/d/1FFLPZXZwBFdEmG7NFQC856NN9ZCfcAthoX53pVq-Du8/htmlembed?widget=false<b>Таблица успеваемости студентов.</b>]
+
[https://docs.google.com/spreadsheets/d/1FFLPZXZwBFdEmG7NFQC856NN9ZCfcAthoX53pVq-Du8/htmlembed<b>Таблица успеваемости студентов.</b>]
  
 
<b>Все основные материалы курса имеются на следующих страницах:</b> http://mit.spbau.ru/courses/algstructures и<br>http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).
 
<b>Все основные материалы курса имеются на следующих страницах:</b> http://mit.spbau.ru/courses/algstructures и<br>http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).
  
__NOTOC__
+
<h2>Математическая модель пространства событий в специальной теории относительности</h2>
<h2>2&nbsp; Билинейная и полилинейная алгебра</h2>
+
<table cellpadding="6" cellspacing="0">
 +
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Пропасть, зияющая между нашим повседневным мышлением и нормами математического рассуждения, должна оставаться<br>неприкосновенной, если мы хотим, чтобы математика выполняла свои функции.</td></tr><tr align="right"><td><i>Ю.И. Манин. Математика как метафора</i></td></tr></table></td></tr></table>
  
<h3>2.1&nbsp; Векторные пространства с ¯-билинейной формой</h3>
+
Наша цель — предложить математическую модель пространства событий в специальной теории относительности (далее: СТО) в рамках современных<br>(но относительно элементарных) алгебры и геометрии и изучить некоторые ее свойства.
<h5>2.1.1&nbsp; ???</h5>
+
  
<h5>2.1.?&nbsp; Векторные пространства с ¯-квадратичной формой</h5>
+
<ul><li><i>Глобальная <math>4</math>-мерная система координат</i> на множестве <math>M</math> — биекция между множествами <math>M</math> и <math>\mathbb R^4</math>.
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>.
+
<li>Глобальные <math>4</math>-мерные системы координат <math>\alpha</math> и <math>\tilde\alpha</math> на множестве <math>M</math> <i>инерциально согласованы в смысле СТО</i>, если замена координат <math>\tilde\alpha\circ\alpha^{-1}</math> —<br>преобразование Пуанкаре (композиция специального ортохронного преобразования Лоренца и сдвига), то есть существуют такие <math>\Lambda_\alpha^\tilde\alpha\in\mathrm{SO}^+(1,3)</math><br>и <math>\xi_\alpha^\tilde\alpha\in\mathbb R^4</math>, что для любых <math>x\in\mathbb R^4</math> выполнено <math>\tilde\alpha(\alpha^{-1}(x))=\Lambda_\alpha^\tilde\alpha\!\cdot x+\xi_\alpha^\tilde\alpha</math>.
<li><u>Теорема о поляризации квадратичной формы.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v-w)\bigr)/4\end{align}\!\biggr)</math>, имеем следующий факт:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i>
+
<li><u>Лемма 1.</u> Отношение инерциальной согласованности в смысле СТО является отношением эквивалентности.
<li><u>Теорема о поляризации ¯-квадратичной формы над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm iw)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm iw)\bigr)/4\end{align}\!\biggr)</math>,<br>имеем следующий факт: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\overline\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i></ul>
+
<li><i>Пространство событий в СТО</i> — множество <math>M</math>, на котором зафиксирован класс <math>\mathcal A_M</math> инерциальной согласованности в смысле СТО глобальных<br><math>4</math>-мерных систем координат.
 +
<li><i>Инерциальная система координат</i> на пространстве событий <math>M</math> в СТО — глобальная <math>4</math>-мерная система координат, принадлежащая классу <math>\mathcal A_M</math>.</ul>
  
<h5>2.1.?&nbsp; Диагонализация симметричных ¯-билинейных форм</h5>
+
Из определения следует, что на пространстве событий в СТО задана более жесткая структура, чем структура <math>4</math>-мерного многообразия: на <math>4</math>-мерном<br>многообразии разрешены любые гладкие замены координат, а на пространстве событий в СТО, изучаемом в инерциальных системах координат,<br>разрешены только замены координат, являющиеся преобразованиями Пуанкаре. Для пространства событий в СТО определены все стандартные<br>конструкции дифференциальной геометрии, относящиеся к произвольным многообразиям: касательные пространства и кокасательные пространства,<br>тензорные расслоения и тензорные поля, симметричные и внешние формы и так далее (все эти конструкции инвариантны относительно любых гладких<br>замен координат и, в частности, инвариантны относительно замен координат, являющихся преобразованиями Пуанкаре). Кроме этих конструкций, для<br>пространства событий в СТО, изучаемого в инерциальных системах координат, определены специфические конструкции, связанные с тем, что на этом<br>пространстве рассматриваются только очень жесткие замены координат. Далее мы определяем эти конструкции.
<ul><li>Ортогональный базис: <math>e\in\mathrm{OOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица<math>\bigr)</math><math>\;\Leftrightarrow\,</math><math>\forall\,j_1,j_2\in\{1,\ldots,\dim V\}\;\bigl(j_1\ne j_2\,\Rightarrow\,\sigma(e_{j_1},e_{j_2})=0\bigr)</math>.
+
<li>Ортонормированный базис (обычно <math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>e\in\mathrm{OnOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали<math>\bigr)</math>.
+
<li><u>Лемма о неизотропном векторе.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над полем <math>K</math> и<br><math>\sigma\in\overline\mathrm{SBi}(V)\!\setminus\!\{0\}</math>; тогда существует такой вектор <math>v\in V</math>, что <math>\sigma(v,v)\ne0</math>.</i>
+
<li><u>Теорема Лагранжа о диагонализации симметричной ¯-билинейной формы.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное<br>пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>\sigma\in\overline\mathrm{SBi}(V)</math>; тогда<br>(1) в пространстве <math>V</math> существует ортогональный базис (то есть <math>\mathrm{OOB}(V,\sigma)\ne\varnothing</math>);<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то в пространстве <math>V</math> существует ортонормированный базис (то есть <math>\mathrm{OnOB}(V,\sigma)\ne\varnothing</math>).</i>
+
<li><u>Матричная формулировка теоремы Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; тогда<br>(1) существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица;<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали.</i>
+
<li>Метод Лагранжа: приведение квадратичной формы к сумме квадратов (с коэффициентами) при помощи выделения полных квадратов.
+
<li><u>Процесс ортогонализации Грама–Шмидта в пространстве с симметричной ¯-билинейной формой.</u> <i>Пусть <math>K</math> — поле с инволюцией,<br><math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>\sigma\in\overline\mathrm{SBi}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>. Пусть <math>e\in\mathrm{OB}(V)</math>;<br>для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>.<br>Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно тому, что <math>m_i\ne0</math>). Тогда<br>(1) существует единственная такая последовательность <math>\hat e\in V^n</math>, что для любых <math>i\in\{1,\ldots,n\}</math> выполнено <math>\hat e_i\in(e_i+V_{i-1})\cap V_{i-1}^\perp</math>;<br>(2) последовательность <math>\hat e</math> из пункта (1) обладает следующими свойствами: <math>\hat e\in\mathrm{OOB}(V,\sigma)</math> и для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br><math>\sigma(\hat e_i,\hat e_i)=\frac{m_i}{m_{i-1}}</math>, а также <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i></ul>
+
  
<h3>2.2&nbsp; Векторные пространства с симметричной ¯-билинейной формой над <math>\mathbb R</math> или <math>\mathbb C</math></h3>
+
Всюду далее <math>M</math> — пространство событий в СТО.
<h5>2.2.1&nbsp; Положительно и отрицательно определенные формы и матрицы</h5>
+
<ul><li>Множество положительно определенных форм над <math>\mathbb R</math> или <math>\mathbb C</math>: <math>\overline\mathrm{SBi}_{>0}(V)=\{\sigma\in\overline\mathrm{SBi}(V)\mid\forall\,v\in V\!\setminus\!\{0\}\;\bigl(\sigma(v,v)>0\bigr)\}</math>.
+
<li>Множество положительно определенных матриц над <math>\mathbb R</math> или <math>\mathbb C</math>: <math>\overline\mathrm S\mathrm{Mat}_{>0}(n,K)=\{s\in\overline\mathrm S\mathrm{Mat}(n,K)\mid\forall\,v\in K^n\!\setminus\!\{0\}\;\bigl(v^\mathtt T\!\cdot s\cdot\overline v>0\bigr)\}</math>.
+
<li>Отрицательно определенные формы и матрицы: в двух предыдущих определениях символы «<math>>0</math>» заменяются на символы «<math><0</math>».
+
<li>Положительно и отрицательно полуопределенные формы и матрицы: символы «<math>></math>» и «<math><</math>» заменяются на символы «<math>\ge</math>» и «<math>\le</math>» соответственно.
+
<li><u>Критерий Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>\sigma\in\overline\mathrm{SBi}(V)</math>; обозначим<br>через <math>n</math> число <math>\dim V</math>. Пусть <math>e\in\mathrm{OB}(V)</math>; для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>. Тогда<br>(1) <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(m_i>0\bigr)</math>;<br>(2) <math>\sigma\in\overline\mathrm{SBi}_{<0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl((-1)^i\,m_i>0\bigr)</math>.</i>
+
<li><u>Матричная формулировка критерия Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; для любых <math>i\in\{1,\ldots,n\}</math><br>обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>s</math>; тогда<br>(1) <math>s\in\overline\mathrm S\mathrm{Mat}_{>0}(n,K)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(m_i>0\bigr)</math>;<br>(2) <math>s\in\overline\mathrm S\mathrm{Mat}_{<0}(n,K)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl((-1)^i\,m_i>0\bigr)</math>.</i></ul>
+
  
<h5>2.2.2&nbsp; Сигнатура симметричной ¯-билинейной формы над <math>\mathbb R</math> или <math>\mathbb C</math></h5>
+
<ul><li><u>Лемма 2.</u> Для любых <math>m\in M</math>, <math>v\in\mathrm T_mM</math> и <math>\alpha,\tilde\alpha\in\mathcal A_M</math> выполнено <math>v^\tilde\alpha\!=\Lambda_\alpha^\tilde\alpha\!\cdot v^\alpha</math> (здесь <math>v^\alpha</math> — столбец координат вектора <math>v</math> относительно базиса<br><math>\Bigl\{\frac\partial{\partial x^0}(m),\frac\partial{\partial x^1}(m),\frac\partial{\partial x^2}(m),\frac\partial{\partial x^3}(m)\Bigr\}</math> пространства <math>\mathrm T_mM</math>, определяемого инерциальной системой координат <math>\alpha</math> на <math>M</math>).
<ul><li>Два ранга формы: <math>\mathrm{rk}_{>0}(\sigma)=\max\{\dim U\mid U\le V\;\land\;\sigma|_{U\times U}\!\in\overline\mathrm{SBi}_{>0}(U)\}</math> и <math>\mathrm{rk}_{<0}(\sigma)=\max\{\dim U\mid U\le V\;\land\;\sigma|_{U\times U}\!\in\overline\mathrm{SBi}_{<0}(U)\}</math>.
+
<li>Пусть <math>m,n\in M</math> и <math>v\in\mathrm T_mM</math>; <i>сумма</i> <math>n+v</math> события <math>n</math> и касательного вектора <math>v</math> — событие <math>\alpha^{-1}(\alpha(n)+v^\alpha)</math>, где <math>\alpha\in\mathcal A_M</math>.
<li><u>Закон инерции Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math> и <math>\sigma\in\overline\mathrm{SBi}(V)</math>,<br>а также <math>e\in\mathrm{OOB}(V,\sigma)</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда<br>(1) <math>\mathrm{rk}_{>0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> , значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> не зависит от базиса <math>e</math>);<br>(2) <math>\mathrm{rk}_{<0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> не зависит от базиса <math>e</math>).</i>
+
<li><u>Лемма 3.</u> Определение суммы события и касательного вектора не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
<li>Сигнатура формы: пара <math>(\mathrm{rk}_{>0}(\sigma),\mathrm{rk}_{<0}(\sigma))</math>. Пространство Минковского — четырехмерное пространство над <math>\mathbb R</math> с формой сигнатуры <math>(1,3)</math>.
+
<li>Пусть <math>m\in M</math>; <i>скалярное произведение</i> <math>g(m)</math> на касательном пространстве <math>\mathrm T_mM</math> — невырожденная симметричная билинейная форма<br><math>\biggl(\!\begin{align}\mathrm T_mM\times\mathrm T_mM&\to\mathbb R\\(v,w)&\mapsto(v^\alpha)^\mathtt T\!\cdot\mathrm{diag}(1,-1,-1,-1)\cdot w^\alpha\!\end{align}\!\biggr)</math>, где <math>\alpha\in\mathcal A_M</math>.
<li>Отступление в геометрию???</ul>
+
<li><u>Лемма 4.</u> Определение скалярного произведения на касательном пространстве не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
 +
<li>Пусть <math>k\in\mathbb N</math>, <math>m_1,\ldots,m_k\in M</math>, <math>\tau_1,\ldots,\tau_k\in\mathbb R</math> и <math>\tau_1+\ldots+\tau_k=1</math>; <i>барицентрическая комбинация</i> <math>\tau_1m_1+\ldots+\tau_km_k</math> событий <math>m_1,\ldots,m_k</math><br>с коэффициентами <math>\tau_1,\ldots,\tau_k</math> — событие <math>\alpha^{-1}(\tau_1\alpha(m_1)+\ldots+\tau_k\alpha(m_k))</math>, где <math>\alpha\in\mathcal A_M</math>.
 +
<li><u>Лемма 5.</u> Определение барицентрической комбинации событий не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
 +
<li>Пусть <math>m,n\in M</math>; <i>прямая</i>, проходящая через события <math>m</math> и <math>n</math>, — множество <math>\{(1-\tau)m+\tau\,n\mid\tau\in\mathbb R\}</math>.
 +
<li>Пусть <math>m,n\in M</math>; <i>разность</i> <math>n-m</math> событий <math>m</math> и <math>n</math> — скорость в нуле пути <math>\biggl(\!\begin{align}\mathbb R&\to M\\\tau&\mapsto(1-\tau)m+\tau\,n\end{align}\!\biggr)</math> (это элемент касательного простр.-ва <math>\mathrm T_mM</math>).
 +
<li><u>Лемма 6.</u> Для любых <math>m,n\in M</math> и <math>\alpha\in\mathcal A_M</math> выполнено <math>(n-m)^\alpha\!=\alpha(n)-\alpha(m)</math>.
 +
<li><u>Теорема об инвариантных биекциях и изоморфизмах.</u> Пусть <math>m,n\in M</math>; тогда<br>(1) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to M\\v&\mapsto m+v\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}M&\to\mathrm T_mM\\n&\mapsto n-m\end{align}\!\biggr)</math> суть взаимно обратные биекции;<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathrm T_nM\\v&\mapsto(n+v)-n\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm T_nM&\to\mathrm T_mM\\v&\mapsto(m+v)-m\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы псевдоевклидовых пространств.</ul>
  
<h5>2.2.3&nbsp; (Псевдо)евклидовы и (псевдо)эрмитовы пространства</h5>
+
Написанные выше утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:<br>структурой аффинного пространства над каждым касательным пространством (для любых событий и касательных векторов определена их сумма) и<br>структурой псевдориманова многообразия сигнатуры <math>(1,3)</math> (для любых касательных векторов, принадлежащих одному касательному пространству,<br>определено их скалярное произведение), а также на нем имеется параллельный перенос между любыми двумя касательными пространствами.
  
<h3>2.2&nbsp; Евклидовы и эрмитовы пространства</h3>
+
<h2>Дифференциальные операторы на многообразии <math>\mathbb R^3</math></h2>
<h5>2.2.1&nbsp; ???</h5>
+
<ul><li><u>Процесс ортогонализации Грама–Шмидта в евклидовом или эрмитовом пространстве.</u> <i>Пусть <math>V</math> — евклидово или эрмитово пространство;<br>обозначим через <math>n</math> число <math>\dim V</math>. Пусть <math>e\in\mathrm{OB}(V)</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math>. Тогда<br>(1) существует единственная такая последовательность <math>\hat e\in V^n</math>, что для любых <math>i\in\{1,\ldots,n\}</math> выполнено <math>\hat e_i\in(e_i+V_{i-1})\cap V_{i-1}^\perp</math>;<br>(2) определим последовательность <math>\check e\in V^n</math>, используя последовательность <math>\hat e</math> из пункта (1): для любых <math>i\in\{1,\ldots,n\}</math> обозначим<br>через <math>\check e_i</math> вектор <math>\frac{\hat e_i}{\|\hat e_i\|}</math>; тогда последовательность <math>\check e</math> обладает следующими свойствами: <math>\check e\in\mathrm{OnOB}(V)</math> и для любых <math>i\in\{1,\ldots,n\}</math><br>выполнено <math>\check e_i=\frac{e_i-\sum_{j=1}^{i-1}(e_i,\check e_j)\check e_j}{\|e_i-\sum_{j=1}^{i-1}(e_i,\check e_j)\check e_j\|}</math> (это индуктивная формула для нахождения векторов <math>\check e_1,\ldots,\check e_n</math>).</i>
+
  
<h3>2.3&nbsp; Линейные операторы и ¯-билинейные формы</h3>
+
Рассмотрим множество <math>\mathbb R^3</math> как трехмерное риманово ориентированное многообразие, структура которого задана атласом, являющимся классом<br>согласованности системы координат <math>\mathrm{id}_{\mathbb R^3}</math> (эти координаты обозначаются <math>(x,y,z)</math>), метрической формой («метрическим тензором» или «квадратом<br>элемента длины») <math>\sigma=(\mathrm dx)^2+(\mathrm dy)^2+(\mathrm dz)^2</math> и формой объема («элементом объема») <math>vol=\mathrm dx\wedge\mathrm dy\wedge\mathrm dz</math> (в записи с тензорным произведением<br><math>\sigma=\mathrm dx\otimes\mathrm dx+\mathrm dy\otimes\mathrm dy+\mathrm dz\otimes\mathrm dz</math> и <math>vol=\mathrm dx\otimes\mathrm dy\otimes\mathrm dz+\mathrm dy\otimes\mathrm dz\otimes\mathrm dx+\mathrm dz\otimes\mathrm dx\otimes\mathrm dy-\mathrm dx\otimes\mathrm dz\otimes\mathrm dy-\mathrm dz\otimes\mathrm dy\otimes\mathrm dx-\mathrm dy\otimes\mathrm dx\otimes\mathrm dz</math>).
 +
 
 +
Пусть <math>(x^1,x^2,x^3)</math> — система координат на <math>\mathbb R^3</math>; тогда<br>(1) <math>\mathrm dx=\frac{\partial x}{\partial x^1}\,\mathrm dx^1+\frac{\partial x}{\partial x^2}\,\mathrm dx^2+\frac{\partial x}{\partial x^3}\,\mathrm dx^3</math>, <math>\mathrm dy=\frac{\partial y}{\partial x^1}\,\mathrm dx^1+\frac{\partial y}{\partial x^2}\,\mathrm dx^2+\frac{\partial y}{\partial x^3}\,\mathrm dx^3</math> и <math>\mathrm dz=\frac{\partial z}{\partial x^1}\,\mathrm dx^1+\frac{\partial z}{\partial x^2}\,\mathrm dx^2+\frac{\partial z}{\partial x^3}\,\mathrm dx^3</math>;<br>(2) <math>\sigma=(\mathrm dx)^2+(\mathrm dy)^2+(\mathrm dz)^2=\sigma_{1,1}(\mathrm dx^1)^2+\sigma_{2,2}(\mathrm dx^2)^2+\sigma_{3,3}(\mathrm dx^3)^2+2\,\sigma_{1,2}\,\mathrm dx^1\,\mathrm dx^2+2\,\sigma_{1,3}\,\mathrm dx^1\,\mathrm dx^3+2\,\sigma_{2,3}\,\mathrm dx^2\,\mathrm dx^3</math>, где для любых<br><math>j_1,j_2\in\{1,2,3\}</math> выполнено <math>\sigma_{j_1,j_2}\!=\frac{\partial x}{\partial x^{j_1}}\frac{\partial x}{\partial x^{j_2}}+\frac{\partial y}{\partial x^{j_1}}\frac{\partial y}{\partial x^{j_2}}+\frac{\partial z}{\partial x^{j_1}}\frac{\partial z}{\partial x^{j_2}}</math>;<br>(3) <math>vol=\mathrm dx\wedge\mathrm dy\wedge\mathrm dz=vol_{1,2,3}\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3</math>, где <math>vol_{1,2,3}</math> есть якобиан замены координат при переходе от коорд. <math>(x^1,x^2,x^3)</math> к коорд. <math>(x,y,z)</math>.
 +
 
 +
Пусть <math>(x^1,x^2,x^3)</math> — ортогональная положительно ориентированная система координат на <math>\mathbb R^3</math> (то есть <math>\sigma_{1,2}=\sigma_{1,3}=\sigma_{2,3}=0</math> и <math>vol_{1,2,3}\!>0</math>); тогда<br><math>\sigma=\sigma_{1,1}(\mathrm dx^1)^2+\sigma_{2,2}(\mathrm dx^2)^2+\sigma_{3,3}(\mathrm dx^3)^2</math> и <math>vol=vol_{1,2,3}\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3</math>, где <math>vol_{1,2,3}\!=\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}\,\sigma_{3,3}}</math>.
 +
 
 +
<ul><li>Зафиксируем ортогональную положительно ориентированную систему координат <math>(x^1,x^2,x^3)</math> на <math>\mathbb R^3</math> и обозначим через <math>e_1</math>, <math>e_2</math> и <math>e_3</math> векторные<br>поля <math>\frac1{\!\sqrt{\sigma_{1,1}}}\frac{\partial}{\partial x^1}</math>, <math>\frac1{\!\sqrt{\sigma_{2,2}}}\frac{\partial}{\partial x^2}</math> и <math>\frac1{\!\sqrt{\sigma_{3,3}}}\frac{\partial}{\partial x^3}</math> соответственно (они образуют ортонормированный базис в каждом касательном пространстве); тогда<br><math>e^1\!=\!\sqrt{\sigma_{1,1}}\,\mathrm dx^1</math>, <math>e^2\!=\!\sqrt{\sigma_{2,2}}\,\mathrm dx^2</math> и <math>e^3\!=\!\sqrt{\sigma_{3,3}}\,\mathrm dx^3</math>, а также <math>\sigma=(e^1)^2+(e^2)^2+(e^3)^2</math> и <math>vol=e^1\!\wedge e^2\!\wedge e^3</math>.
 +
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(\mathbb R^3)</math>; тогда<br>(1) <math>{\downarrow}\,v=v^1e^1+v^2e^2+v^3e^3\!=\!\sqrt{\sigma_{1,1}}\,v^1\mathrm dx^1+\!\sqrt{\sigma_{2,2}}\,v^2\mathrm dx^2+\!\sqrt{\sigma_{3,3}}\,v^3\mathrm dx^3</math>;<br>(2) <math>*\,({\downarrow}\,v)=v^1e^2\!\wedge e^3-v^2e^1\!\wedge e^3+v^3e^1\!\wedge e^2\!=\!\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\mathrm dx^2\!\wedge\mathrm dx^3-\!\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\mathrm dx^1\!\wedge\mathrm dx^3+\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\mathrm dx^1\!\wedge\mathrm dx^2</math>.
 +
<li>Пусть <math>f\in\mathrm{Func}(\mathbb R^3)</math>; найдем градиент функции <math>f</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\nabla f={\uparrow}\,(\mathrm df)={\uparrow}\,(\partial_1f\;\mathrm dx^1+\partial_2f\;\mathrm dx^2+\partial_3f\;\mathrm dx^3)=\frac1{\!\sqrt{\sigma_{1,1}}}\,\partial_1f\;e_1+\frac1{\!\sqrt{\sigma_{2,2}}}\,\partial_2f\;e_2+\frac1{\!\sqrt{\sigma_{3,3}}}\,\partial_3f\;e_3</math>.
 +
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(\mathbb R^3)</math>; найдем дивергенцию векторного поля <math>v</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,({\downarrow}\,v)=*\,\mathrm d\bigl(\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\mathrm dx^2\!\wedge\mathrm dx^3-\!\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\mathrm dx^1\!\wedge\mathrm dx^3+\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\mathrm dx^1\!\wedge\mathrm dx^2\bigr)=</math><br><math>=*\Bigl(\bigl(\partial_1\bigl(\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\bigr)+\partial_2\bigl(\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\bigr)+\partial_3\bigl(\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\bigr)\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3\Bigr)=</math><br><math>=\frac1{\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}\,\sigma_{3,3}}}\bigl(\partial_1\bigl(\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\bigr)+\partial_2\bigl(\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\bigr)+\partial_3\bigl(\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\bigr)\bigr)</math>.
 +
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(\mathbb R^3)</math>; найдем ротор векторного поля <math>v</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\mathrm{rot}\,v={\uparrow}\,(*\,\mathrm d({\downarrow}\,v))={\uparrow}\,\bigl({*}\,\mathrm d\bigl(\sqrt{\sigma_{1,1}}\,v^1\mathrm dx^1+\!\sqrt{\sigma_{2,2}}\,v^2\mathrm dx^2+\!\sqrt{\sigma_{3,3}}\,v^3\mathrm dx^3\bigr)\bigr)=</math><br><math>={\uparrow}\Bigl({*}\Bigl(\!\bigl(\partial_2\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)\!\bigr)\,\mathrm dx^2\!\wedge\mathrm dx^3+\bigl(\partial_1\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)\!\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^3+\bigl(\partial_1\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)-\partial_2\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)\!\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^2\Bigr)\!\Bigr)\!=</math><br><math>=\frac{\partial_2\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)}{\sqrt{\sigma_{2,2}\,\sigma_{3,3}}}\,e_1-\frac{\partial_1\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)}{\sqrt{\sigma_{1,1}\,\sigma_{3,3}}}\,e_2+\frac{\partial_1\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)-\partial_2\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)}{\sqrt{\sigma_{1,1}\,\sigma_{2,2}}}\,e_3</math>.
 +
<li>Пусть <math>f\in\mathrm{Func}(\mathbb R^3)</math>; найдем лапласиан функции <math>f</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\Delta f=\mathrm{div}(\nabla f)=\mathrm{div}\Bigl(\frac1{\!\sqrt{\sigma_{1,1}}}\,\partial_1f\;e_1+\frac1{\!\sqrt{\sigma_{2,2}}}\,\partial_2f\;e_2+\frac1{\!\sqrt{\sigma_{3,3}}}\,\partial_3f\;e_3\Bigr)\!=</math><br><math>=\frac1{\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}\,\sigma_{3,3}}}\Bigl(\partial_1\Bigl(\frac{\!\sqrt{\sigma_{2,2}\,\sigma_{3,3}}}{\sqrt{\sigma_{1,1}}}\,\partial_1f\Bigr)+\partial_2\Bigl(\frac{\!\sqrt{\sigma_{1,1}\,\sigma_{3,3}}}{\sqrt{\sigma_{2,2}}}\,\partial_2f\Bigr)+\partial_3\Bigl(\frac{\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}}}{\sqrt{\sigma_{3,3}}}\,\partial_3f\Bigr)\!\Bigr)</math>.</ul>
 +
 
 +
Нетривиальными примерами ортогональной положительно ориентированной системы координат на <math>\mathbb R^3</math> (за исключением множества меры нуль)<br>являются цилиндрическая система координат <math>(\rho,\varphi,z)</math> и сферическая система координат <math>(r,\theta,\varphi)</math>. Ниже найдены функции <math>\sigma_{1,1}</math>, <math>\sigma_{2,2}</math>, <math>\sigma_{3,3}</math> для этих<br>систем координат; используя формулы для этих функций и приведенные выше формулы для дифференциальных операторов, можно найти формулы<br>для рассматриваемых дифференциальных операторов в цилиндрической и сферической системах координат.
 +
 
 +
<ul><li>Функции <math>\sigma_{1,1}</math>, <math>\sigma_{2,2}</math>, <math>\sigma_{3,3}</math> для цилиндрической системы координат:<br><math>\sigma_{1,1}=\Bigl(\frac{\partial(\rho\cos\varphi)}{\partial\rho}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(\rho\sin\varphi)}{\partial\rho}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial\rho}\Bigr)^{\!2}\!=1</math>, <math>\sigma_{2,2}=\Bigl(\frac{\partial(\rho\cos\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(\rho\sin\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial\varphi}\Bigr)^{\!2}\!=\rho^2</math>,<br><math>\sigma_{3,3}=\Bigl(\frac{\partial(\rho\cos\varphi)}{\partial z}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(\rho\sin\varphi)}{\partial z}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial z}\Bigr)^{\!2}\!=1</math>.
 +
<li>Функции <math>\sigma_{1,1}</math>, <math>\sigma_{2,2}</math>, <math>\sigma_{3,3}</math> для сферической системы координат:<br><math>\sigma_{1,1}=\Bigl(\frac{\partial(r\sin\theta\cos\varphi)}{\partial r}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\sin\theta\sin\varphi)}{\partial r}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\cos\theta)}{\partial r}\Bigr)^{\!2}\!=1</math>, <math>\sigma_{2,2}=\Bigl(\frac{\partial(r\sin\theta\cos\varphi)}{\partial\theta}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\sin\theta\sin\varphi)}{\partial\theta}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\cos\theta)}{\partial\theta}\Bigr)^{\!2}\!=r^2</math>,<br><math>\sigma_{3,3}=\Bigl(\frac{\partial(r\sin\theta\cos\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\sin\theta\sin\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\cos\theta)}{\partial\varphi}\Bigr)^{\!2}\!=r^2\sin^2\theta</math>.</ul>

Текущая версия на 17:00, 21 июня 2017

Лектор: Евгений Евгеньевич Горячко.

Преподаватель практики у подгруппы №1: Евгений Евгеньевич Горячко.

Список подгруппы №1 на практике: Иван Абрамов, Евгений Акимов, Роман Васильев, Марк Геллер, Сергей Голованов,
Андрей Крутиков, Рауф Курбанов, Антон Мордберг, Кирилл Пилюгин, Дмитрий Саввинов, Андрей Серебро, Алексей Степанов,
Ильнур Шугаепов, Наталья Ялышева, а также Иван Дмитриевский и Ирина Щукина.

Преподаватель практики у подгруппы №2: Софья Сергеевна Афанасьева.

Список подгруппы №2 на практике: Дмитрий Байдин, Виталий Бибаев, Фёдор Бочаров, Артём Бутомов, Святослав Власов,
Шамиль Гарифуллин, Егор Горбунов, Эдгар Жаворонков, Никита Иванов, Сергей Козлов, Татьяна Кузина, Михаил Митрофанов,
Семён Поляков, Владислав Саенко, Леонид Сташевский, Константин Чаркин.

Файл с домашним заданием на 11-е ноября.

Таблица успеваемости студентов.

Все основные материалы курса имеются на следующих страницах: http://mit.spbau.ru/courses/algstructures и
http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).

Математическая модель пространства событий в специальной теории относительности

Пропасть, зияющая между нашим повседневным мышлением и нормами математического рассуждения, должна оставаться
неприкосновенной, если мы хотим, чтобы математика выполняла свои функции.
Ю.И. Манин. Математика как метафора

Наша цель — предложить математическую модель пространства событий в специальной теории относительности (далее: СТО) в рамках современных
(но относительно элементарных) алгебры и геометрии и изучить некоторые ее свойства.

  • Глобальная -мерная система координат на множестве — биекция между множествами и .
  • Глобальные -мерные системы координат и на множестве инерциально согласованы в смысле СТО, если замена координат
    преобразование Пуанкаре (композиция специального ортохронного преобразования Лоренца и сдвига), то есть существуют такие
    и , что для любых выполнено .
  • Лемма 1. Отношение инерциальной согласованности в смысле СТО является отношением эквивалентности.
  • Пространство событий в СТО — множество , на котором зафиксирован класс инерциальной согласованности в смысле СТО глобальных
    -мерных систем координат.
  • Инерциальная система координат на пространстве событий в СТО — глобальная -мерная система координат, принадлежащая классу .

Из определения следует, что на пространстве событий в СТО задана более жесткая структура, чем структура -мерного многообразия: на -мерном
многообразии разрешены любые гладкие замены координат, а на пространстве событий в СТО, изучаемом в инерциальных системах координат,
разрешены только замены координат, являющиеся преобразованиями Пуанкаре. Для пространства событий в СТО определены все стандартные
конструкции дифференциальной геометрии, относящиеся к произвольным многообразиям: касательные пространства и кокасательные пространства,
тензорные расслоения и тензорные поля, симметричные и внешние формы и так далее (все эти конструкции инвариантны относительно любых гладких
замен координат и, в частности, инвариантны относительно замен координат, являющихся преобразованиями Пуанкаре). Кроме этих конструкций, для
пространства событий в СТО, изучаемого в инерциальных системах координат, определены специфические конструкции, связанные с тем, что на этом
пространстве рассматриваются только очень жесткие замены координат. Далее мы определяем эти конструкции.

Всюду далее — пространство событий в СТО.

  • Лемма 2. Для любых , и выполнено (здесь — столбец координат вектора относительно базиса
    пространства , определяемого инерциальной системой координат на ).
  • Пусть и ; сумма события и касательного вектора — событие , где .
  • Лемма 3. Определение суммы события и касательного вектора не зависит от выбора инерциальной системы координат на .
  • Пусть ; скалярное произведение на касательном пространстве — невырожденная симметричная билинейная форма
    , где .
  • Лемма 4. Определение скалярного произведения на касательном пространстве не зависит от выбора инерциальной системы координат на .
  • Пусть , , и ; барицентрическая комбинация событий
    с коэффициентами — событие , где .
  • Лемма 5. Определение барицентрической комбинации событий не зависит от выбора инерциальной системы координат на .
  • Пусть ; прямая, проходящая через события и , — множество .
  • Пусть ; разность событий и — скорость в нуле пути (это элемент касательного простр.-ва ).
  • Лемма 6. Для любых и выполнено .
  • Теорема об инвариантных биекциях и изоморфизмах. Пусть ; тогда
    (1) отображения и суть взаимно обратные биекции;
    (2) отображения и суть взаимно обратные изоморфизмы псевдоевклидовых пространств.

Написанные выше утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:
структурой аффинного пространства над каждым касательным пространством (для любых событий и касательных векторов определена их сумма) и
структурой псевдориманова многообразия сигнатуры (для любых касательных векторов, принадлежащих одному касательному пространству,
определено их скалярное произведение), а также на нем имеется параллельный перенос между любыми двумя касательными пространствами.

Дифференциальные операторы на многообразии

Рассмотрим множество как трехмерное риманово ориентированное многообразие, структура которого задана атласом, являющимся классом
согласованности системы координат (эти координаты обозначаются ), метрической формой («метрическим тензором» или «квадратом
элемента длины») и формой объема («элементом объема») (в записи с тензорным произведением
и ).

Пусть — система координат на ; тогда
(1) , и ;
(2) , где для любых
выполнено ;
(3) , где есть якобиан замены координат при переходе от коорд. к коорд. .

Пусть — ортогональная положительно ориентированная система координат на (то есть и ); тогда
и , где .

  • Зафиксируем ортогональную положительно ориентированную систему координат на и обозначим через , и векторные
    поля , и соответственно (они образуют ортонормированный базис в каждом касательном пространстве); тогда
    , и , а также и .
  • Пусть ; тогда
    (1) ;
    (2) .
  • Пусть ; найдем градиент функции в координатах :
    .
  • Пусть ; найдем дивергенцию векторного поля в координатах :


    .
  • Пусть ; найдем ротор векторного поля в координатах :


    .
  • Пусть ; найдем лапласиан функции в координатах :

    .

Нетривиальными примерами ортогональной положительно ориентированной системы координат на (за исключением множества меры нуль)
являются цилиндрическая система координат и сферическая система координат . Ниже найдены функции , , для этих
систем координат; используя формулы для этих функций и приведенные выше формулы для дифференциальных операторов, можно найти формулы
для рассматриваемых дифференциальных операторов в цилиндрической и сферической системах координат.

  • Функции , , для цилиндрической системы координат:
    , ,
    .
  • Функции , , для сферической системы координат:
    , ,
    .