Алгебра phys 1 весна — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
(Новая страница: «__NOTOC__ <font size="3"><b><u>Лектор и преподаватели практики</u></b></font> <b>Лектор:</b> Евгений Евгеньеви…»)
 
Строка 17: Строка 17:
  
 
<font size="3"><b><u>Содержание второго семестра курса алгебры</u></b></font>
 
<font size="3"><b><u>Содержание второго семестра курса алгебры</u></b></font>
 +
 +
<h5>6&nbsp;&nbsp; Векторные пространства</h5>
 +
<ul><li>6.1&nbsp; Определения и конструкции, связанные с векторными пространствами<br>
 +
Векторные пространства. Примеры векторных пространств. Линейные операторы. Подпространства. Подпространство, порожденное множеством.<br>Линейные комбинации. Теорема о слоях и ядре линейного оператора. Системы линейных уравнений. Аффинные операторы. Аффинные подпространства.
 +
<li>6.2&nbsp; Независимые множества, порождающие множества, базисы<br>
 +
Независимые множества. Порождающие множества. Базисы. Стандартные базисы. Теорема о свойствах базиса. Теорема о порядках независимых и<br>порождающих множеств. Теорема о существовании базиса. Теорема об универсальности базиса. Теорема о базисах и линейных операторах.
 +
<li>6.3&nbsp; Размерность, координаты, замена координат<br>
 +
Размерность. Теорема о свойствах размерности. Теорема о размерности и линейных операторах. Столбец координат вектора. Матрица линейного<br>оператора. Теорема о матрице линейного оператора. Матрица замены координат. Преобразование координат векторов и матриц линейных операторов.
 +
<li>6.4&nbsp; Факторпространства, прямая сумма векторных пространств, двойственное пространство<br>
 +
Факторпространства. Теорема о гомоморфизме. Коразмерность. Теорема о факторпространстве. Прямая сумма векторных пространств. Теорема о<br>прямой сумме. Внутренняя прямая сумма. Лемма об инвариантном подпространстве. Двойственное пространство. Двойственный базис. Строка координат<br>ковектора. Преобразование координат ковекторов. Двойственный оператор. Изоморфизм между пространством и дважды двойственным пространством.</ul>
 +
 +
<h5>7&nbsp;&nbsp; Линейные операторы (часть 1)</h5>
 +
<ul><li>7.1&nbsp; Ранг линейного оператора, элементарные преобразования, метод Гаусса<br>
 +
Ранг линейного оператора. Ранг матрицы. Тензорное произведение вектора и ковектора. Теорема о свойствах ранга. Элементарные преобразования.<br>Ступенчатые и строго ступенчатые матрицы. Теорема о приведении матрицы к ступенчатому виду. Метод Гаусса. Теорема Кронекера–Капелли.
 +
<li>7.2&nbsp; Полилинейные операторы, полилинейные формы, формы объема<br>
 +
Полилинейные операторы. Полилинейные формы. Перестановка аргументов форм. Симметричные полилинейные формы. Антисимметричные<br>полилинейные формы. Лемма о симметричных и антисимметричных полилинейных формах. Формы объема. Форма <math>\mathrm{vol}^e</math>. Теорема о формах объема.
 +
<li>7.3&nbsp; Определитель линейного оператора, миноры матрицы, спектр линейного оператора<br>
 +
Определитель линейного оператора. Теорема о свойствах определителя. Группа <math>\mathrm{SL}(V)</math>. Миноры матрицы. Присоединенная матрица. Теорема о<br>присоединенной матрице. Правило Крамера. Теорема о базисном миноре. Собственные числа и собственные векторы. Спектр линейного оператора.<br>Лемма о спектре. Характеристический многочлен линейного оператора. След линейного оператора. Теорема о характеристическом многочлене.</ul><br>
  
 
[[Алгебра_phys_1_февраль–март|<font size="3"><b>Подробный план первой половины второго семестра курса алгебры</b></font>]]
 
[[Алгебра_phys_1_февраль–март|<font size="3"><b>Подробный план первой половины второго семестра курса алгебры</b></font>]]

Версия 15:00, 15 февраля 2019

Лектор и преподаватели практики

Лектор: Евгений Евгеньевич Горячко.

Преподаватель практики у подгруппы по алгебре 101/1: Евгений Евгеньевич Горячко.
Таблица успеваемости на практике студентов подгруппы по алгебре 101/1.

Преподаватель практики у подгруппы по алгебре 101/2: Алексей Викторович Ржонсницкий.
Таблица успеваемости на практике студентов подгруппы по алгебре 101/2.

Дополнительная литература

[1]  Д.В. Беклемишев. Курс аналитической геометрии и линейной алгебры.
[2]  И.М. Гельфанд. Лекции по линейной алгебре.
[3]  А.И. Кострикин. Введение в алгебру. Часть II. Линейная алгебра.
[4]  А.И. Кострикин. Введение в алгебру. Часть III. Основные структуры алгебры.
[5]  А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия.

Содержание второго семестра курса алгебры

6   Векторные пространства
  • 6.1  Определения и конструкции, связанные с векторными пространствами
    Векторные пространства. Примеры векторных пространств. Линейные операторы. Подпространства. Подпространство, порожденное множеством.
    Линейные комбинации. Теорема о слоях и ядре линейного оператора. Системы линейных уравнений. Аффинные операторы. Аффинные подпространства.
  • 6.2  Независимые множества, порождающие множества, базисы
    Независимые множества. Порождающие множества. Базисы. Стандартные базисы. Теорема о свойствах базиса. Теорема о порядках независимых и
    порождающих множеств. Теорема о существовании базиса. Теорема об универсальности базиса. Теорема о базисах и линейных операторах.
  • 6.3  Размерность, координаты, замена координат
    Размерность. Теорема о свойствах размерности. Теорема о размерности и линейных операторах. Столбец координат вектора. Матрица линейного
    оператора. Теорема о матрице линейного оператора. Матрица замены координат. Преобразование координат векторов и матриц линейных операторов.
  • 6.4  Факторпространства, прямая сумма векторных пространств, двойственное пространство
    Факторпространства. Теорема о гомоморфизме. Коразмерность. Теорема о факторпространстве. Прямая сумма векторных пространств. Теорема о
    прямой сумме. Внутренняя прямая сумма. Лемма об инвариантном подпространстве. Двойственное пространство. Двойственный базис. Строка координат
    ковектора. Преобразование координат ковекторов. Двойственный оператор. Изоморфизм между пространством и дважды двойственным пространством.
7   Линейные операторы (часть 1)
  • 7.1  Ранг линейного оператора, элементарные преобразования, метод Гаусса
    Ранг линейного оператора. Ранг матрицы. Тензорное произведение вектора и ковектора. Теорема о свойствах ранга. Элементарные преобразования.
    Ступенчатые и строго ступенчатые матрицы. Теорема о приведении матрицы к ступенчатому виду. Метод Гаусса. Теорема Кронекера–Капелли.
  • 7.2  Полилинейные операторы, полилинейные формы, формы объема
    Полилинейные операторы. Полилинейные формы. Перестановка аргументов форм. Симметричные полилинейные формы. Антисимметричные
    полилинейные формы. Лемма о симметричных и антисимметричных полилинейных формах. Формы объема. Форма . Теорема о формах объема.
  • 7.3  Определитель линейного оператора, миноры матрицы, спектр линейного оператора
    Определитель линейного оператора. Теорема о свойствах определителя. Группа . Миноры матрицы. Присоединенная матрица. Теорема о
    присоединенной матрице. Правило Крамера. Теорема о базисном миноре. Собственные числа и собственные векторы. Спектр линейного оператора.
    Лемма о спектре. Характеристический многочлен линейного оператора. След линейного оператора. Теорема о характеристическом многочлене.

Подробный план первой половины второго семестра курса алгебры