Алгебра phys 1 осень — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
<b>Лектор:</b> Евгений Евгеньевич Горячко.
 
<b>Лектор:</b> Евгений Евгеньевич Горячко.
  
<b>Преподаватель практики у подгруппы 101/1:</b> Евгений Евгеньевич Горячко.
+
<b>Преподаватель практики у подгруппы по алгебре 101/1:</b> Евгений Евгеньевич Горячко.
  
<b>Преподаватель практики у подгруппы 101/2:</b> Алексей Викторович Ржонсницкий.<br><br>
+
<b>Преподаватель практики у подгруппы по алгебре 101/2:</b> Алексей Викторович Ржонсницкий.<br><br>
  
 
<font size="3"><b><u>Дополнительная литература</u></b></font>
 
<font size="3"><b><u>Дополнительная литература</u></b></font>

Версия 18:00, 12 сентября 2018

Лектор и преподаватели практики

Лектор: Евгений Евгеньевич Горячко.

Преподаватель практики у подгруппы по алгебре 101/1: Евгений Евгеньевич Горячко.

Преподаватель практики у подгруппы по алгебре 101/2: Алексей Викторович Ржонсницкий.

Дополнительная литература

[1]  Э.Б. Винберг. Курс алгебры.
[2]  А.Л. Городенцев. Алгебра – 1.
[3]  А.И. Кострикин. Введение в алгебру. Часть I. Основы алгебры.
[4]  А.И. Кострикин. Введение в алгебру. Часть III. Основные структуры алгебры.
[5]  Ю.И. Манин. Математика как метафора.

Книги по алгебре (разного качества) можно скачать через сайт http://eek.diary.ru/p57704941.htm.

Полезные учебные материалы по алгебре имеются на странице А.Л. Городенцева и на странице А.В. Степанова.

Содержание первого семестра курса алгебры

1   Множества, отображения, отношения
  • 1.1  Множества
    Логические операции. Кванторы. Равенство множеств. Задание множества перечислением элементов. Выделение подмножества. Операции над
    множествами. Теорема об операциях над множествами. Числовые множества. Множество подмножеств множества. Прямая степень множества.
  • 1.2  Отображения
    Отображения. Область и кообласть отображения. Образы и прообразы относительно отображения. Сужения отображения. Инъекции. Сюръекции.
    Биекции. Композиция отображений. Тождественное отображение. Теорема о композиции отображений. Обратное отображение.
  • 1.3  Отношения
    Отношения. Область и кообласть отношения. Отношения эквивалентности. Классы эквивалентности. Фактормножества. Трансверсали. Разбиения.
    Слои отображения. Факторотображения. Принцип Дирихле. Отношения порядка. Наименьший элемент множества с отношением порядка.
2   Группы (часть 1)
  • 2.1  Множества с операцией
    Операции на множестве. Гомоморфизмы. Изоморфизмы. Эндоморфизмы. Автоморфизмы. Теорема о композиции гомоморфизмов. Операции над
    подмножествами. Ассоциативные и коммутативные операции. Полугруппы. Гомоморфизмы полугрупп. Лемма об обобщенной ассоциативности.
  • 2.2  Моноиды и группы (основные определения и примеры)
    Моноиды. Гомоморфизмы моноидов. Примеры моноидов. Обратимые элементы моноида. Группы. Гомоморфизмы групп. Таблица Кэли. Примеры групп.
    Группы изометрий. Симметрические группы. Цикловая запись перестановки. Лемма о циклах. Мультипликативные и аддитивные обозначения.
  • 2.3  Подгруппы, классы смежности, циклические группы
    Подгруппы. Подгруппа, порожденная множеством. Правые и левые классы смежности по подгруппе. Теорема Лагранжа. Индекс подгруппы. Порядок
    элемента группы. Лемма о порядке элемента. Теорема об обратимых остатках. Циклические группы. Теорема о циклических группах.
  • 2.4  Нормальные подгруппы, факторгруппы, прямое произведение групп
    Нормальные подгруппы. Сопряжение. Нормальная подгруппа, порожденная множеством. Ядро гомоморфизма. Теорема о слоях и ядре гомоморфизма.
    Факторгруппы. Теорема о гомоморфизме. Задание групп образующими и соотношениями. Прямое произведение групп. Теорема о прямом произведении.
3   Кольца (часть 1)
  • 3.1  Определения и конструкции, связанные с кольцами
    Кольца. Гомоморфизмы колец. Примеры колец. Аддитивная группа и мультипликативная группа кольца. Подкольца. Идеалы. Факторкольца. Теорема о
    гомоморфизме. Прямое произведение колец. Характеристика. Кольца без делителей нуля. Области целостности. Тела. Поля. Гомоморфизмы полей.
  • 3.2  Кольца многочленов
    Кольца многочленов. Лемма о степени многочлена. Делимость. Неприводимые многочлены. Лемма о делении многочленов с остатком. Кольцо остатков
    по модулю многочлена. Полиномиальные функции. Корни многочленов. Теорема Безу. Теорема о количестве корней многочлена. Теорема Виета.
  • 3.3  Поле комплексных чисел
    Кольцо комплексных чисел. Вещественная и мнимая части. Сопряжение. Модуль. Теорема о свойствах комплексных чисел. Группа . Экспонента.
    Теорема о свойствах экспоненты. Группы корней из единицы. «Основная теорема алгебры». Теорема о неприводимых многочленах над полями и .
  • 3.4  Тело кватернионов
    Кольцо кватернионов. Скалярная и векторная части. Чистые кватернионы. Умножение чистых кватернионов. Сопряжение. Модуль. Теорема о свойствах
    кватернионов. Группа . Экспонента. Теорема о свойствах экспоненты. Теорема об описании изометрий двумерного и трехмерного пространств.

Подробный план первой половины первого семестра курса алгебры