Test page — различия между версиями
Материал из SEWiki
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | <b> | + | <b>Formulas were compiled before January 16th, 2018. Formulas differ from the text, this is nice.</b> |
<ul><li>Кольцо комплексных чисел: <math>\mathbb C=\{\alpha+\beta\,\mathrm i\mid\alpha,\beta\in\mathbb R\}</math>, где <math>\mathrm i^2=-1</math>. Утверждение: <math>\mathbb C\cong\mathbb R[x]/(x^2+1)</math>. Комплексные числа как точки плоскости <math>\mathbb R^2</math>. | <ul><li>Кольцо комплексных чисел: <math>\mathbb C=\{\alpha+\beta\,\mathrm i\mid\alpha,\beta\in\mathbb R\}</math>, где <math>\mathrm i^2=-1</math>. Утверждение: <math>\mathbb C\cong\mathbb R[x]/(x^2+1)</math>. Комплексные числа как точки плоскости <math>\mathbb R^2</math>. | ||
<li>Вещественная и мнимая части: <math>\mathrm{Re}(\alpha+\beta\,\mathrm i)=\alpha</math> и <math>\mathrm{Im}(\alpha+\beta\,\mathrm i)=\beta</math>. Сопряжение: <math>\overline a=\mathrm{Re}(a)-\mathrm{Im}(a)\,\mathrm i</math>. Модуль: <math>|a|=\!\sqrt{\mathrm{Re}(a)^2+\mathrm{Im}(a)^2}</math>. | <li>Вещественная и мнимая части: <math>\mathrm{Re}(\alpha+\beta\,\mathrm i)=\alpha</math> и <math>\mathrm{Im}(\alpha+\beta\,\mathrm i)=\beta</math>. Сопряжение: <math>\overline a=\mathrm{Re}(a)-\mathrm{Im}(a)\,\mathrm i</math>. Модуль: <math>|a|=\!\sqrt{\mathrm{Re}(a)^2+\mathrm{Im}(a)^2}</math>. | ||
<li><u>Теорема о свойствах комплексных чисел.</u><br><i>(1) Для любых <math>a\in\mathbb C</math> выполнено <math>a\,\overline a=|a|^2</math> и, если <math>a\ne0</math>, то <math>a^{-1}\!=\!\frac\overline a{|a|^2}</math> (и, значит, <math>\mathbb C</math> — поле).<br>(2) Для любых <math>a,b\in\mathbb C</math> выполнено <math>\overline{a+b}=\overline a+\overline b</math> и <math>\overline{a\,b}=\overline a\,\overline b</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C&\to\mathbb C\\a&\mapsto\overline a\end{align}\!\biggr)</math> — автоморфизм поля <math>\,\mathbb C</math>).<br>(3) Для любых <math>a,b\in\mathbb C</math> выполнено <math>|a\,b|=|a|\,|b|</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C^\times\!\!&\to\mathbb R_{>0}\!\\a&\mapsto|a|\end{align}\!\biggr)</math> — гомоморфизм групп).</i></ul> | <li><u>Теорема о свойствах комплексных чисел.</u><br><i>(1) Для любых <math>a\in\mathbb C</math> выполнено <math>a\,\overline a=|a|^2</math> и, если <math>a\ne0</math>, то <math>a^{-1}\!=\!\frac\overline a{|a|^2}</math> (и, значит, <math>\mathbb C</math> — поле).<br>(2) Для любых <math>a,b\in\mathbb C</math> выполнено <math>\overline{a+b}=\overline a+\overline b</math> и <math>\overline{a\,b}=\overline a\,\overline b</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C&\to\mathbb C\\a&\mapsto\overline a\end{align}\!\biggr)</math> — автоморфизм поля <math>\,\mathbb C</math>).<br>(3) Для любых <math>a,b\in\mathbb C</math> выполнено <math>|a\,b|=|a|\,|b|</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C^\times\!\!&\to\mathbb R_{>0}\!\\a&\mapsto|a|\end{align}\!\biggr)</math> — гомоморфизм групп).</i></ul> | ||
− | <b> | + | <b>Formulas were compiled January 16th, 2018. Formulas do not differ from the text, this is not nice.</b> |
<ul><li>Кольцо комплексных чисел: <math>\mathbb C=\{\alpha+\beta\,\mathrm i\mid\alpha,\beta\in\mathbb R\}{}</math>, где <math>\mathrm i^2=-1{}</math>. Утверждение: <math>\mathbb C\cong\mathbb R[x]/(x^2+1){}</math>. Комплексные числа как точки плоскости <math>\mathbb R^2{}</math>. | <ul><li>Кольцо комплексных чисел: <math>\mathbb C=\{\alpha+\beta\,\mathrm i\mid\alpha,\beta\in\mathbb R\}{}</math>, где <math>\mathrm i^2=-1{}</math>. Утверждение: <math>\mathbb C\cong\mathbb R[x]/(x^2+1){}</math>. Комплексные числа как точки плоскости <math>\mathbb R^2{}</math>. | ||
<li>Вещественная и мнимая части: <math>\mathrm{Re}(\alpha+\beta\,\mathrm i)=\alpha{}</math> и <math>\mathrm{Im}(\alpha+\beta\,\mathrm i)=\beta{}</math>. Сопряжение: <math>\overline a=\mathrm{Re}(a)-\mathrm{Im}(a)\,\mathrm i{}</math>. Модуль: <math>|a|=\!\sqrt{\mathrm{Re}(a)^2+\mathrm{Im}(a)^2}{}</math>. | <li>Вещественная и мнимая части: <math>\mathrm{Re}(\alpha+\beta\,\mathrm i)=\alpha{}</math> и <math>\mathrm{Im}(\alpha+\beta\,\mathrm i)=\beta{}</math>. Сопряжение: <math>\overline a=\mathrm{Re}(a)-\mathrm{Im}(a)\,\mathrm i{}</math>. Модуль: <math>|a|=\!\sqrt{\mathrm{Re}(a)^2+\mathrm{Im}(a)^2}{}</math>. | ||
<li><u>Теорема о свойствах комплексных чисел.</u><br><i>(1) Для любых <math>a\in\mathbb C{}</math> выполнено <math>a\,\overline a=|a|^2{}</math> и, если <math>a\ne0{}</math>, то <math>a^{-1}\!=\!\frac{\overline a}{|a|^2}</math> (и, значит, <math>\mathbb C{}</math> — поле).<br>(2) Для любых <math>a,b\in\mathbb C{}</math> выполнено <math>\overline{a+b}=\overline a+\overline b{}</math> и <math>\overline{a\,b}=\overline a\,\overline b{}</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C&\to\mathbb C\\a&\mapsto\overline a\end{align}\!\biggr){}</math> — автоморфизм поля <math>\,\mathbb C{}</math>).<br>(3) Для любых <math>a,b\in\mathbb C{}</math> выполнено <math>|a\,b|=|a|\,|b|{}</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C^\times\!\!&\to\mathbb R_{>0}\!\\a&\mapsto|a|\end{align}\!\biggr){}</math> — гомоморфизм групп).</i></ul> | <li><u>Теорема о свойствах комплексных чисел.</u><br><i>(1) Для любых <math>a\in\mathbb C{}</math> выполнено <math>a\,\overline a=|a|^2{}</math> и, если <math>a\ne0{}</math>, то <math>a^{-1}\!=\!\frac{\overline a}{|a|^2}</math> (и, значит, <math>\mathbb C{}</math> — поле).<br>(2) Для любых <math>a,b\in\mathbb C{}</math> выполнено <math>\overline{a+b}=\overline a+\overline b{}</math> и <math>\overline{a\,b}=\overline a\,\overline b{}</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C&\to\mathbb C\\a&\mapsto\overline a\end{align}\!\biggr){}</math> — автоморфизм поля <math>\,\mathbb C{}</math>).<br>(3) Для любых <math>a,b\in\mathbb C{}</math> выполнено <math>|a\,b|=|a|\,|b|{}</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb C^\times\!\!&\to\mathbb R_{>0}\!\\a&\mapsto|a|\end{align}\!\biggr){}</math> — гомоморфизм групп).</i></ul> | ||
− | <b> | + | <b>There are formulas that were compiled before January 16th, 2018, and formulas that were compiled January 16th, 2018. Rasterization is different.</b> |
− | + | ||
− | + | ||
− | + | ||
<ul><li><math>(X\cup Y)\cup Z=X\cup(Y\cup Z)</math>. <math>(X+Y)+Z=X+(Y+Z)</math>. <math>X\cup Y=Y\cup X</math>. <math>X+Y=Y+X</math>.</ul> | <ul><li><math>(X\cup Y)\cup Z=X\cup(Y\cup Z)</math>. <math>(X+Y)+Z=X+(Y+Z)</math>. <math>X\cup Y=Y\cup X</math>. <math>X+Y=Y+X</math>.</ul> | ||
− | == Тестирование (h2) == | + | <!--== Тестирование (h2) == |
Вот тут будет ненумерованный список: | Вот тут будет ненумерованный список: | ||
* Первый элемент | * Первый элемент | ||
Строка 30: | Строка 27: | ||
====== Подподподзаголовок (h6) ====== | ====== Подподподзаголовок (h6) ====== | ||
− | <h6>А вот это — заголовок через HTML-тег</h6> | + | <h6>А вот это — заголовок через HTML-тег</h6>--> |
Версия 18:00, 17 января 2018
Formulas were compiled before January 16th, 2018. Formulas differ from the text, this is nice.
- Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
- Вещественная и мнимая части: и . Сопряжение: . Модуль: .
- Теорема о свойствах комплексных чисел.
(1) Для любых выполнено и, если , то (и, значит, — поле).
(2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
Formulas were compiled January 16th, 2018. Formulas do not differ from the text, this is not nice.
- Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
- Вещественная и мнимая части: и . Сопряжение: . Модуль: .
- Теорема о свойствах комплексных чисел.
(1) Для любых выполнено и, если , то (и, значит, — поле).
(2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
There are formulas that were compiled before January 16th, 2018, and formulas that were compiled January 16th, 2018. Rasterization is different.
- . . . .