Алгебраические структуры 5 2015 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
 
(не показано 45 промежуточных версий этого же участника)
Строка 11: Строка 11:
 
[[Медиа:Problems_11.11.pdf|<b>Файл с домашним заданием на 11-е ноября.</b>]]
 
[[Медиа:Problems_11.11.pdf|<b>Файл с домашним заданием на 11-е ноября.</b>]]
  
[https://docs.google.com/spreadsheets/d/1FFLPZXZwBFdEmG7NFQC856NN9ZCfcAthoX53pVq-Du8/htmlembed?widget=false<b>Таблица успеваемости студентов.</b>]
+
[https://docs.google.com/spreadsheets/d/1FFLPZXZwBFdEmG7NFQC856NN9ZCfcAthoX53pVq-Du8/htmlembed<b>Таблица успеваемости студентов.</b>]
  
 
<b>Все основные материалы курса имеются на следующих страницах:</b> http://mit.spbau.ru/courses/algstructures и<br>http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).
 
<b>Все основные материалы курса имеются на следующих страницах:</b> http://mit.spbau.ru/courses/algstructures и<br>http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).
  
__NOTOC__
+
<h2>Математическая модель пространства событий в специальной теории относительности</h2>
<h2>2&nbsp; Билинейная и полилинейная алгебра</h2>
+
<table cellpadding="6" cellspacing="0">
 +
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Пропасть, зияющая между нашим повседневным мышлением и нормами математического рассуждения, должна оставаться<br>неприкосновенной, если мы хотим, чтобы математика выполняла свои функции.</td></tr><tr align="right"><td><i>Ю.И. Манин. Математика как метафора</i></td></tr></table></td></tr></table>
  
<h3>2.1&nbsp; Векторные пространства с ¯-билинейной формой</h3>
+
Наша цель — предложить математическую модель пространства событий в специальной теории относительности (далее: СТО) в рамках современных<br>(но относительно элементарных) алгебры и геометрии и изучить некоторые ее свойства.
<h5>2.1.1&nbsp; ¯-Билинейные формы</h5>
+
<ul><li>Пространство билинейных форм <math>\mathrm{Bi}(V)</math>. Примеры билинейных форм: <math>(v,w)\mapsto\!\sum_{j_1=1}^n\sum_{j_2=1}^ns_{j_1,j_2}v^{j_1}w^{j_2}</math>, <math>(f,g)\mapsto\!\int_X\!sfg</math>, <math>(\lambda,\mu)\mapsto\!\int_M\!\lambda\wedge\mu</math>.
+
<li>Необходимость изучения ¯-билинейных форм. Поля с инволюцией. Пространство <math>\overline V</math>. Пространство ¯-билинейных форм: <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>.
+
<li>Гомоморфизмы между пространствами с формой: <math>\mathrm{Hom}((V,\sigma),(Y,\varphi))=\{a\in\mathrm{Hom}(V,Y)\mid\forall\,v,w\in V\;\bigl(\sigma(v,w)=\varphi(a(v),a(w))\bigr)\}</math>.
+
<li>Матрица Грама: <math>(\sigma_{e,e})_{j_1,j_2}\!=\sigma(e_{j_1}\!,e_{j_2})</math>. ¯-Билинейная форма в координатах: <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>.
+
<li>Изоморфизм <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>.
+
<li>Пространства (над <math>\mathrm{Fix}_K(\text{¯})</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>.
+
<li>Пространства (над <math>\mathrm{Fix}_K(\text{¯})</math>) <math>\overline\mathrm{ABi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=-\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm A\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=-\overline s\}</math>.</ul>
+
  
<h5>2.1.2&nbsp; ¯-Квадратичные формы</h5>
+
<ul><li><i>Глобальная <math>4</math>-мерная система координат</i> на множестве <math>M</math> — биекция между множествами <math>M</math> и <math>\mathbb R^4</math>.
<ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\overline c\,\kappa(v)</math>.
+
<li>Глобальные <math>4</math>-мерные системы координат <math>\alpha</math> и <math>\tilde\alpha</math> на множестве <math>M</math> <i>инерциально согласованы в смысле СТО</i>, если замена координат <math>\tilde\alpha\circ\alpha^{-1}</math> <br>преобразование Пуанкаре (композиция специального ортохронного преобразования Лоренца и сдвига), то есть существуют такие <math>\Lambda_\alpha^\tilde\alpha\in\mathrm{SO}^+(1,3)</math><br>и <math>\xi_\alpha^\tilde\alpha\in\mathbb R^4</math>, что для любых <math>x\in\mathbb R^4</math> выполнено <math>\tilde\alpha(\alpha^{-1}(x))=\Lambda_\alpha^\tilde\alpha\!\cdot x+\xi_\alpha^\tilde\alpha</math>.
<li>¯-Квадратичная форма в координатах: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math> — однородный ¯-многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>.
+
<li><u>Лемма 1.</u> Отношение инерциальной согласованности в смысле СТО является отношением эквивалентности.
<li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v-w)\bigr)/4\end{align}\!\biggr)</math>, имеем следующий факт:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i>
+
<li><i>Пространство событий в СТО</i> — множество <math>M</math>, на котором зафиксирован класс <math>\mathcal A_M</math> инерциальной согласованности в смысле СТО глобальных<br><math>4</math>-мерных систем координат.
<li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>,<br>имеем следующий факт: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\overline\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i>
+
<li><i>Инерциальная система координат</i> на пространстве событий <math>M</math> в СТО — глобальная <math>4</math>-мерная система координат, принадлежащая классу <math>\mathcal A_M</math>.</ul>
<li>Принцип поляризации: возможность проверять некоторые утверждения о ¯-билинейных формах только для аргументов вида <math>(v,v)</math>.
+
<li>Утверждение: <i>пусть <math>\mathrm{char}\,K\ne2</math>, <math>\sigma\in\mathrm{SBi}(V)</math> или <math>K=\mathbb C</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>; тогда <math>\mathrm{Aut}(V,\sigma)=\{a\in\mathrm{GL}(V)\mid\forall\,v\in V\;\bigl(\sigma(v,v)=\sigma(a(v),a(v))\bigr)\}</math></i>.</ul>
+
  
<h5>2.1.3&nbsp; Невырожденные ¯-билинейные формы</h5>
+
Из определения следует, что на пространстве событий в СТО задана более жесткая структура, чем структура <math>4</math>-мерного многообразия: на <math>4</math>-мерном<br>многообразии разрешены любые гладкие замены координат, а на пространстве событий в СТО, изучаемом в инерциальных системах координат,<br>разрешены только замены координат, являющиеся преобразованиями Пуанкаре. Для пространства событий в СТО определены все стандартные<br>конструкции дифференциальной геометрии, относящиеся к произвольным многообразиям: касательные пространства и кокасательные пространства,<br>тензорные расслоения и тензорные поля, симметричные и внешние формы и так далее (все эти конструкции инвариантны относительно любых гладких<br>замен координат и, в частности, инвариантны относительно замен координат, являющихся преобразованиями Пуанкаре). Кроме этих конструкций, для<br>пространства событий в СТО, изучаемого в инерциальных системах координат, определены специфические конструкции, связанные с тем, что на этом<br>пространстве рассматриваются только очень жесткие замены координат. Далее мы определяем эти конструкции.
<ul><li>Опускание индекса: <math>\biggl(\!\begin{align}\downarrow_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math>. Опускание индекса в координатах: <math>({\downarrow}_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>({\downarrow}_\sigma v)_j=\sum_{i=1}^n\sigma_{i,j}\,v^i</math>.
+
<li>Невырожденность формы: <math>\downarrow_\sigma</math> — биекция; слабая невырожденность формы: <math>\downarrow_\sigma</math> — инъекция; если <math>\dim V<\infty</math>, то эти свойства эквивалентны.
+
<li>Форма <math>(f,g)\mapsto\!\int_{-1}^1\!fg</math> на <math>\mathrm C^0\!([-1;1])</math> вырождена, но слабо невырождена. Ранг формы: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,{\downarrow}_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>.
+
<li><u>Лемма о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>e\in V^m</math>; обозначим<br>через <math>U</math> пространство <math>\langle e_1,\ldots,e_m\rangle</math>; тогда <math>\det\sigma_{e,e}\!\ne0</math>, если и только если <math>e\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i>
+
<li>Подъем индекса (<math>\sigma</math> невырождена): <math>\uparrow^\sigma={\downarrow}_\sigma^{-1}</math>. Подъем индекса в координатах (<math>\sigma^{e,e}=(\sigma_{e,e})^{-1}</math>): <math>({\uparrow}^\sigma\lambda)^e=(\sigma^{e,e})^\mathtt T\!\cdot(\lambda_e)^\mathtt T</math> и <math>({\uparrow}^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{i,j}\,\lambda_j</math>.
+
<li>Ортогональное дополнение (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>U^\perp\!=\{v\in V\mid\forall\,u\in U\;\bigl(\sigma(u,v)=0\bigr)\}=\{v\in V\mid\forall\,u\in U\;\bigl(\sigma(v,u)=0\bigr)\}\le V</math>.
+
<li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\le(U^\perp)^\perp</math>, <math>U\le W\,\Rightarrow\,W^\perp\!\le U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\le(U\cap W)^\perp</math>;<br>(2) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp&\mapsto u\end{align}\!\biggr)</math>);<br>(3) если форма <math>\sigma|_{U\times U}</math> невырождена и форма <math>\sigma|_{U^\perp\times\,U^\perp}</math> слабо невырождена, то <math>U=(U^\perp)^\perp</math>.</i></ul>
+
  
<h5>2.1.4&nbsp; Диагонализация ¯-симметричных ¯-билинейных форм</h5>
+
Всюду далее <math>M</math> — пространство событий в СТО.
<ul><li>Ортогональный базис: <math>e\in\mathrm{OOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица<math>\bigr)</math><math>\;\Leftrightarrow\,</math><math>\forall\,j_1,j_2\in\{1,\ldots,\dim V\}\;\bigl(j_1\ne j_2\,\Rightarrow\,\sigma(e_{j_1}\!,e_{j_2})=0\bigr)</math>.
+
<li>Ортонормированный базис (если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>e\in\mathrm{OnOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали<math>\bigr)</math>.
+
<li><u>Лемма о неизотропном векторе.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\!\setminus\!\{0\}</math>; тогда<br>существует такой вектор <math>v\in V</math>, что <math>\sigma(v,v)\ne0</math> (то есть существует неизотропный вектор).</i>
+
<li><u>Теорема Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над <math>K</math>, <math>\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>; тогда<br>(1) в пространстве <math>V</math> существует ортогональный базис (то есть <math>\mathrm{OOB}(V,\sigma)\ne\varnothing</math>);<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то в пространстве <math>V</math> существует ортонормированный базис (то есть <math>\mathrm{OnOB}(V,\sigma)\ne\varnothing</math>).</i>
+
<li><u>Матричная формулировка теоремы Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; тогда<br>(1) существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица;<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали.</i>
+
<li>Метод Лагранжа: приведение квадратичной формы к сумме квадратов (с коэффициентами) при помощи выделения полных квадратов.
+
<li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>v\in V</math>; тогда <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}e_j</math></i>.
+
<li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и<br>обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно<br>тому, что <math>m_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br>(1) <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\,\sigma(\hat e_i,\hat e_i)=\frac{m_i}{m_{i-1}}</math>;<br>(2) <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i></ul>
+
  
<h3>2.2&nbsp; Векторные пространства с ¯-симметричной ¯-билинейной формой над <math>\mathbb R</math> или <math>\mathbb C</math></h3>
+
<ul><li><u>Лемма 2.</u> Для любых <math>m\in M</math>, <math>v\in\mathrm T_mM</math> и <math>\alpha,\tilde\alpha\in\mathcal A_M</math> выполнено <math>v^\tilde\alpha\!=\Lambda_\alpha^\tilde\alpha\!\cdot v^\alpha</math> (здесь <math>v^\alpha</math> — столбец координат вектора <math>v</math> относительно базиса<br><math>\Bigl\{\frac\partial{\partial x^0}(m),\frac\partial{\partial x^1}(m),\frac\partial{\partial x^2}(m),\frac\partial{\partial x^3}(m)\Bigr\}</math> пространства <math>\mathrm T_mM</math>, определяемого инерциальной системой координат <math>\alpha</math> на <math>M</math>).
<h5>2.2.1&nbsp; Положительно и отрицательно определенные формы</h5>
+
<li>Пусть <math>m,n\in M</math> и <math>v\in\mathrm T_mM</math>; <i>сумма</i> <math>n+v</math> события <math>n</math> и касательного вектора <math>v</math> — событие <math>\alpha^{-1}(\alpha(n)+v^\alpha)</math>, где <math>\alpha\in\mathcal A_M</math>.
<ul><li>Множества <math>\overline\mathrm{SBi}_{>0}(V)=\{\sigma\in\overline\mathrm{SBi}(V)\mid\forall\,v\in V\!\setminus\!\{0\}\;\bigl(\sigma(v,v)>0\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}_{>0}(n,K)=\{s\in\overline\mathrm S\mathrm{Mat}(n,K)\mid\forall\,v\in K^n\!\setminus\!\{0\}\;\bigl(v^\mathtt T\!\cdot s\cdot\overline v>0\bigr)\}</math>.
+
<li><u>Лемма 3.</u> Определение суммы события и касательного вектора не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
<li>Множества <math>\overline\mathrm{SBi}_{<0}(V)=\{\sigma\in\overline\mathrm{SBi}(V)\mid\forall\,v\in V\!\setminus\!\{0\}\;\bigl(\sigma(v,v)<0\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}_{<0}(n,K)=\{s\in\overline\mathrm S\mathrm{Mat}(n,K)\mid\forall\,v\in K^n\!\setminus\!\{0\}\;\bigl(v^\mathtt T\!\cdot s\cdot\overline v<0\bigr)\}</math>.
+
<li>Пусть <math>m\in M</math>; <i>скалярное произведение</i> <math>g(m)</math> на касательном пространстве <math>\mathrm T_mM</math> — невырожденная симметричная билинейная форма<br><math>\biggl(\!\begin{align}\mathrm T_mM\times\mathrm T_mM&\to\mathbb R\\(v,w)&\mapsto(v^\alpha)^\mathtt T\!\cdot\mathrm{diag}(1,-1,-1,-1)\cdot w^\alpha\!\end{align}\!\biggr)</math>, где <math>\alpha\in\mathcal A_M</math>.
<li>Неотрицательно и неположительно определенные формы и матрицы: символы «<math>></math>» и «<math><</math>» заменяются на символы «<math>\ge</math>» и «<math>\le</math>» соответственно.
+
<li><u>Лемма 4.</u> Определение скалярного произведения на касательном пространстве не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
<li><u>Критерий Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>;<br>обозначим через <math>n</math> число <math>\dim V</math>; для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>; тогда<br>(1) <math>\sigma\in\overline\mathrm{SBi}_{>0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(m_i>0\bigr)</math>;<br>(2) <math>\sigma\in\overline\mathrm{SBi}_{<0}(V)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl((-1)^i\,m_i>0\bigr)</math>.</i>
+
<li>Пусть <math>k\in\mathbb N</math>, <math>m_1,\ldots,m_k\in M</math>, <math>\tau_1,\ldots,\tau_k\in\mathbb R</math> и <math>\tau_1+\ldots+\tau_k=1</math>; <i>барицентрическая комбинация</i> <math>\tau_1m_1+\ldots+\tau_km_k</math> событий <math>m_1,\ldots,m_k</math><br>с коэффициентами <math>\tau_1,\ldots,\tau_k</math> — событие <math>\alpha^{-1}(\tau_1\alpha(m_1)+\ldots+\tau_k\alpha(m_k))</math>, где <math>\alpha\in\mathcal A_M</math>.
<li><u>Матричная формулировка критерия Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; для любых <math>i\in\{1,\ldots,n\}</math><br>обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>s</math>; тогда<br>(1) <math>s\in\overline\mathrm S\mathrm{Mat}_{>0}(n,K)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl(m_i>0\bigr)</math>;<br>(2) <math>s\in\overline\mathrm S\mathrm{Mat}_{<0}(n,K)</math>, если и только если <math>\forall\,i\in\{1,\ldots,n\}\;\bigl((-1)^i\,m_i>0\bigr)</math>.</i>
+
<li><u>Лемма 5.</u> Определение барицентрической комбинации событий не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
<li>Евклидово<math>/</math>унитарное пространство — конечномерное векторное пространство над <math>\mathbb R</math><math>/</math>над <math>\mathbb C</math> с положительно определенной формой.
+
<li>Пусть <math>m,n\in M</math>; <i>прямая</i>, проходящая через события <math>m</math> и <math>n</math>, — множество <math>\{(1-\tau)m+\tau\,n\mid\tau\in\mathbb R\}</math>.
<li>Ортогонализация многочленов: тригонометрические многочлены и многочлены Лежандра, Чебышёва, Эрмита (см. пункты 5–10 в § 4 части 2 в [2]).</ul>
+
<li>Пусть <math>m,n\in M</math>; <i>разность</i> <math>n-m</math> событий <math>m</math> и <math>n</math> — скорость в нуле пути <math>\biggl(\!\begin{align}\mathbb R&\to M\\\tau&\mapsto(1-\tau)m+\tau\,n\end{align}\!\biggr)</math> (это элемент касательного простр.-ва <math>\mathrm T_mM</math>).
 +
<li><u>Лемма 6.</u> Для любых <math>m,n\in M</math> и <math>\alpha\in\mathcal A_M</math> выполнено <math>(n-m)^\alpha\!=\alpha(n)-\alpha(m)</math>.
 +
<li><u>Теорема об инвариантных биекциях и изоморфизмах.</u> Пусть <math>m,n\in M</math>; тогда<br>(1) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to M\\v&\mapsto m+v\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}M&\to\mathrm T_mM\\n&\mapsto n-m\end{align}\!\biggr)</math> суть взаимно обратные биекции;<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathrm T_nM\\v&\mapsto(n+v)-n\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm T_nM&\to\mathrm T_mM\\v&\mapsto(m+v)-m\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы псевдоевклидовых пространств.</ul>
  
<h5>2.2.2&nbsp; Сигнатура ¯-симметричной ¯-билинейной формы над <math>\mathbb R</math> или <math>\mathbb C</math></h5>
+
Написанные выше утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:<br>структурой аффинного пространства над каждым касательным пространством (для любых событий и касательных векторов определена их сумма) и<br>структурой псевдориманова многообразия сигнатуры <math>(1,3)</math> (для любых касательных векторов, принадлежащих одному касательному пространству,<br>определено их скалярное произведение), а также на нем имеется параллельный перенос между любыми двумя касательными пространствами.
<ul><li>Полож. и отриц. ранги: <math>\mathrm{rk}_{>0}(\sigma)=\max\{\dim U\mid U\le V\;\land\;\sigma|_{U\times U}\!\in\overline\mathrm{SBi}_{>0}(U)\}</math> и <math>\mathrm{rk}_{<0}(\sigma)=\max\{\dim U\mid U\le V\;\land\;\sigma|_{U\times U}\!\in\overline\mathrm{SBi}_{<0}(U)\}</math>.
+
<li><u>Закон инерции Сильвестра.</u> <i>Пусть <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math> и<br><math>e\in\mathrm{OOB}(V,\sigma)</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда<br>(1) <math>\mathrm{rk}_{>0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}>0\}|</math> не зависит от базиса <math>e</math>);<br>(2) <math>\mathrm{rk}_{<0}(\sigma)=|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> (и, значит, число <math>|\{i\in\{1,\ldots,n\}\mid(\sigma_{e,e})_{i,i}<0\}|</math> не зависит от базиса <math>e</math>);<br>(3) <math>\mathrm{rk}_{>0}(\sigma)+\mathrm{rk}_{<0}(\sigma)=\mathrm{rk}(\sigma)</math>.</i>
+
<li>Сигнатура формы: пара <math>(\mathrm{rk}_{>0}(\sigma),\mathrm{rk}_{<0}(\sigma))</math>. Пространство Минковского — четырехмерное пространство над <math>\mathbb R</math> с формой сигнатуры <math>(1,3)</math>.
+
<li>(Псевдо)евклидово пространство — конечномерное векторное пространство над <math>\mathbb R</math> с невырожденной симметричной билинейной формой.
+
<li>(Псевдо)унитарное пространство — конечномерное векторное пространство над <math>\mathbb C</math> с невырожденной ¯-симметричной полуторалинейной формой.
+
<li>Классификация кривых и поверхностей второго порядка при помощи ранга и сигнатуры квадратичных форм (см. § 2 главы VIII в [1]).</ul>
+
  
<h5>2.2.3&nbsp; Евклидовы и унитарные пространства</h5>
+
<h2>Дифференциальные операторы на многообразии <math>\mathbb R^3</math></h2>
<ul><li>Обозначение формы: <math>(,)</math>. Примеры: <math>(v,w)=\sum_{i=1}^nv^i\overline{w^i}</math>, <math>(f,g)=\!\int_X\!f\overline g</math>. Норма: <math>\|v\|=\!\sqrt{(v,v)}</math>. Утверждение: <i><math>v\ne0\,\Rightarrow\,\|v\|>0</math> и <math>\|c\,v\|=|c|\,\|v\|</math></i>.
+
<li><u>Теорема о свойствах нормы.</u> <i>Пусть <math>V</math> — евклидово или унитарное пространство; тогда<br>(1) для любых <math>v,w\in V</math> выполнено <math>|(v,w)|\le\|v\|\,\|w\|</math> (это неравенство Коши–Буняковского–Шварца);<br>(2) для любых <math>v,w\in V</math> выполнено <math>\|v+w\|\le\|v\|+\|w\|</math> (это неравенство треугольника);<br>(3) для любых <math>e\in\mathrm{OnOB}(V)</math> и <math>v\in V</math> выполнено <math>v=\!\sum_{i=1}^{\dim V}\!(v,e_i)e_i</math> и <math>\|v\|^2=\!\sum_{i=1}^{\dim V}\!|(v,e_i)|^2</math> (это равенство Парсеваля).</i>
+
<li><u>Теорема об ортогональном проектировании.</u> <i>Пусть <math>V</math> — евклидово или унитарное пространство и <math>U\le V</math>; тогда<br>(1) для любых <math>e\in\mathrm{OnOB}(U)</math> и <math>v\in V</math> выполнено <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!(v,e_j)e_j</math> и <math>\|v\|^2\ge\!\sum_{j=1}^{\dim U}\!|(v,e_j)|^2</math> (это неравенство Бесселя);<br>(2) для любых <math>v\in V</math> и <math>u\in U\!\setminus\!\{\mathrm{proj}_U(v)\}</math> выполнено <math>\|v-\mathrm{proj}_U(v)\|<\|v-u\|</math> (и, значит, <math>\|v-\mathrm{proj}_U(v)\|=\min\{\|v-u\|\mid u\in U\}</math>).</i>
+
<li>Угол между векторами и угол между вектором и подпространством (если <math>K=\mathbb R</math>): <math>\angle(v,w)=\arccos\frac{(v,w)}{\|v\|\,\|w\|}</math> и <math>\angle(v,U)=\angle(v,\mathrm{proj}_U(v))</math>.
+
<li><u>Процесс ортогонализации Грама–Шмидта в евклидовом или унитарном пространстве.</u> <i>Пусть <math>V</math> — евклидово или унитарное пространство<br>и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math>. Для любых<br><math>i\in\{1,\ldots,n\}</math> обозначим через <math>\check e_i</math> вектор <math>\frac{e_i-\mathrm{proj}_{V_{i-1}}(e_i)}{\|e_i-\mathrm{proj}_{V_{i-1}}(e_i)\|}</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br>(1) <math>(\check e_1,\dots,\check e_i)\in\mathrm{OnOB}(V_i)</math>;<br>(2) <math>\check e_i=\frac{e_i-\sum_{j=1}^{i-1}(e_i,\check e_j)\check e_j}{\|e_i-\sum_{j=1}^{i-1}(e_i,\check e_j)\check e_j\|}</math> (это индуктивная формула для нахождения векторов <math>\check e_1,\ldots,\check e_n</math>).</i>
+
<li>Гильбертово пространство над <math>\mathbb R</math><math>/</math>над <math>\mathbb C</math> — (не обязательно конечномерное) «евклидово»<math>/</math>«унитарное» пространство, полное относительно нормы.</ul>
+
  
<h3>2.3&nbsp; Линейные операторы и ¯-билинейные формы</h3>
+
Рассмотрим множество <math>\mathbb R^3</math> как трехмерное риманово ориентированное многообразие, структура которого задана атласом, являющимся классом<br>согласованности системы координат <math>\mathrm{id}_{\mathbb R^3}</math> (эти координаты обозначаются <math>(x,y,z)</math>), метрической формой («метрическим тензором» или «квадратом<br>элемента длины») <math>\sigma=(\mathrm dx)^2+(\mathrm dy)^2+(\mathrm dz)^2</math> и формой объема («элементом объема») <math>vol=\mathrm dx\wedge\mathrm dy\wedge\mathrm dz</math> (в записи с тензорным произведением<br><math>\sigma=\mathrm dx\otimes\mathrm dx+\mathrm dy\otimes\mathrm dy+\mathrm dz\otimes\mathrm dz</math> и <math>vol=\mathrm dx\otimes\mathrm dy\otimes\mathrm dz+\mathrm dy\otimes\mathrm dz\otimes\mathrm dx+\mathrm dz\otimes\mathrm dx\otimes\mathrm dy-\mathrm dx\otimes\mathrm dz\otimes\mathrm dy-\mathrm dz\otimes\mathrm dy\otimes\mathrm dx-\mathrm dy\otimes\mathrm dx\otimes\mathrm dz</math>).
<h5>2.3.1&nbsp; Форма, связанная с оператором, и сопряженный оператор</h5>
+
 
<ul><li>Форма, связанная с оператором: <math>\sigma_a(v,w)=\sigma(a(v),w)</math> (<math>\Leftrightarrow\,{\downarrow}_{\sigma_a}\!={\downarrow}_\sigma\!\circ a</math>). Форма, связанная с оператором, в координатах: <math>(\sigma_a)_{e,e}=(a_e^e)^\mathtt T\!\cdot\sigma_{e,e}</math>.
+
Пусть <math>(x^1,x^2,x^3)</math> — система координат на <math>\mathbb R^3</math>; тогда<br>(1) <math>\mathrm dx=\frac{\partial x}{\partial x^1}\,\mathrm dx^1+\frac{\partial x}{\partial x^2}\,\mathrm dx^2+\frac{\partial x}{\partial x^3}\,\mathrm dx^3</math>, <math>\mathrm dy=\frac{\partial y}{\partial x^1}\,\mathrm dx^1+\frac{\partial y}{\partial x^2}\,\mathrm dx^2+\frac{\partial y}{\partial x^3}\,\mathrm dx^3</math> и <math>\mathrm dz=\frac{\partial z}{\partial x^1}\,\mathrm dx^1+\frac{\partial z}{\partial x^2}\,\mathrm dx^2+\frac{\partial z}{\partial x^3}\,\mathrm dx^3</math>;<br>(2) <math>\sigma=(\mathrm dx)^2+(\mathrm dy)^2+(\mathrm dz)^2=\sigma_{1,1}(\mathrm dx^1)^2+\sigma_{2,2}(\mathrm dx^2)^2+\sigma_{3,3}(\mathrm dx^3)^2+2\,\sigma_{1,2}\,\mathrm dx^1\,\mathrm dx^2+2\,\sigma_{1,3}\,\mathrm dx^1\,\mathrm dx^3+2\,\sigma_{2,3}\,\mathrm dx^2\,\mathrm dx^3</math>, где для любых<br><math>j_1,j_2\in\{1,2,3\}</math> выполнено <math>\sigma_{j_1,j_2}\!=\frac{\partial x}{\partial x^{j_1}}\frac{\partial x}{\partial x^{j_2}}+\frac{\partial y}{\partial x^{j_1}}\frac{\partial y}{\partial x^{j_2}}+\frac{\partial z}{\partial x^{j_1}}\frac{\partial z}{\partial x^{j_2}}</math>;<br>(3) <math>vol=\mathrm dx\wedge\mathrm dy\wedge\mathrm dz=vol_{1,2,3}\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3</math>, где <math>vol_{1,2,3}</math> есть якобиан замены координат при переходе от коорд. <math>(x^1,x^2,x^3)</math> к коорд. <math>(x,y,z)</math>.
<li><u>Лемма об изоморфизме между операторами и формами.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>,<br><math>\sigma\in\overline\mathrm{Bi}(V)</math> и форма <math>\sigma</math> невырождена; тогда отображения <math>\biggl(\!\begin{align}\mathrm{End}(V)&\to\overline\mathrm{Bi}(V)\\a&\mapsto\sigma_a\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{End}(V)\\\tau&\mapsto{\uparrow}^\sigma\!\circ{\downarrow}_\tau\end{align}\!\biggr)</math> суть взаимно обратные<br>изоморфизмы векторных пространств, отображающие обратимые операторы в невырожденные формы и наоборот.</i>
+
 
<li>Сопряженный оператор (<math>\sigma</math> невырождена): <math>a^*(v)={\uparrow}^\sigma(({\downarrow}_\sigma v)\circ a)</math> (<math>\Leftrightarrow\,\forall\,v,w\in V\,\bigl(\sigma(v,a(w))=\sigma(a^*(v),w)\bigr)</math>).</ul>
+
Пусть <math>(x^1,x^2,x^3)</math> — ортогональная положительно ориентированная система координат на <math>\mathbb R^3</math> (то есть <math>\sigma_{1,2}=\sigma_{1,3}=\sigma_{2,3}=0</math> и <math>vol_{1,2,3}\!>0</math>); тогда<br><math>\sigma=\sigma_{1,1}(\mathrm dx^1)^2+\sigma_{2,2}(\mathrm dx^2)^2+\sigma_{3,3}(\mathrm dx^3)^2</math> и <math>vol=vol_{1,2,3}\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3</math>, где <math>vol_{1,2,3}\!=\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}\,\sigma_{3,3}}</math>.
 +
 
 +
<ul><li>Зафиксируем ортогональную положительно ориентированную систему координат <math>(x^1,x^2,x^3)</math> на <math>\mathbb R^3</math> и обозначим через <math>e_1</math>, <math>e_2</math> и <math>e_3</math> векторные<br>поля <math>\frac1{\!\sqrt{\sigma_{1,1}}}\frac{\partial}{\partial x^1}</math>, <math>\frac1{\!\sqrt{\sigma_{2,2}}}\frac{\partial}{\partial x^2}</math> и <math>\frac1{\!\sqrt{\sigma_{3,3}}}\frac{\partial}{\partial x^3}</math> соответственно (они образуют ортонормированный базис в каждом касательном пространстве); тогда<br><math>e^1\!=\!\sqrt{\sigma_{1,1}}\,\mathrm dx^1</math>, <math>e^2\!=\!\sqrt{\sigma_{2,2}}\,\mathrm dx^2</math> и <math>e^3\!=\!\sqrt{\sigma_{3,3}}\,\mathrm dx^3</math>, а также <math>\sigma=(e^1)^2+(e^2)^2+(e^3)^2</math> и <math>vol=e^1\!\wedge e^2\!\wedge e^3</math>.
 +
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(\mathbb R^3)</math>; тогда<br>(1) <math>{\downarrow}\,v=v^1e^1+v^2e^2+v^3e^3\!=\!\sqrt{\sigma_{1,1}}\,v^1\mathrm dx^1+\!\sqrt{\sigma_{2,2}}\,v^2\mathrm dx^2+\!\sqrt{\sigma_{3,3}}\,v^3\mathrm dx^3</math>;<br>(2) <math>*\,({\downarrow}\,v)=v^1e^2\!\wedge e^3-v^2e^1\!\wedge e^3+v^3e^1\!\wedge e^2\!=\!\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\mathrm dx^2\!\wedge\mathrm dx^3-\!\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\mathrm dx^1\!\wedge\mathrm dx^3+\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\mathrm dx^1\!\wedge\mathrm dx^2</math>.
 +
<li>Пусть <math>f\in\mathrm{Func}(\mathbb R^3)</math>; найдем градиент функции <math>f</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\nabla f={\uparrow}\,(\mathrm df)={\uparrow}\,(\partial_1f\;\mathrm dx^1+\partial_2f\;\mathrm dx^2+\partial_3f\;\mathrm dx^3)=\frac1{\!\sqrt{\sigma_{1,1}}}\,\partial_1f\;e_1+\frac1{\!\sqrt{\sigma_{2,2}}}\,\partial_2f\;e_2+\frac1{\!\sqrt{\sigma_{3,3}}}\,\partial_3f\;e_3</math>.
 +
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(\mathbb R^3)</math>; найдем дивергенцию векторного поля <math>v</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\mathrm{div}\,v=*\,\mathrm d\,{*}\,({\downarrow}\,v)=*\,\mathrm d\bigl(\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\mathrm dx^2\!\wedge\mathrm dx^3-\!\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\mathrm dx^1\!\wedge\mathrm dx^3+\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\mathrm dx^1\!\wedge\mathrm dx^2\bigr)=</math><br><math>=*\Bigl(\bigl(\partial_1\bigl(\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\bigr)+\partial_2\bigl(\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\bigr)+\partial_3\bigl(\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\bigr)\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^2\!\wedge\mathrm dx^3\Bigr)=</math><br><math>=\frac1{\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}\,\sigma_{3,3}}}\bigl(\partial_1\bigl(\sqrt{\sigma_{2,2}\,\sigma_{3,3}}\,v^1\bigr)+\partial_2\bigl(\sqrt{\sigma_{1,1}\,\sigma_{3,3}}\,v^2\bigr)+\partial_3\bigl(\sqrt{\sigma_{1,1}\,\sigma_{2,2}}\,v^3\bigr)\bigr)</math>.
 +
<li>Пусть <math>v=v^1e_1+v^2e_2+v^3e_3\in\mathrm{Vect}(\mathbb R^3)</math>; найдем ротор векторного поля <math>v</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\mathrm{rot}\,v={\uparrow}\,(*\,\mathrm d({\downarrow}\,v))={\uparrow}\,\bigl({*}\,\mathrm d\bigl(\sqrt{\sigma_{1,1}}\,v^1\mathrm dx^1+\!\sqrt{\sigma_{2,2}}\,v^2\mathrm dx^2+\!\sqrt{\sigma_{3,3}}\,v^3\mathrm dx^3\bigr)\bigr)=</math><br><math>={\uparrow}\Bigl({*}\Bigl(\!\bigl(\partial_2\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)\!\bigr)\,\mathrm dx^2\!\wedge\mathrm dx^3+\bigl(\partial_1\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)\!\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^3+\bigl(\partial_1\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)-\partial_2\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)\!\bigr)\,\mathrm dx^1\!\wedge\mathrm dx^2\Bigr)\!\Bigr)\!=</math><br><math>=\frac{\partial_2\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)}{\sqrt{\sigma_{2,2}\,\sigma_{3,3}}}\,e_1-\frac{\partial_1\bigl(\sqrt{\sigma_{3,3}}\,v^3\bigr)-\partial_3\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)}{\sqrt{\sigma_{1,1}\,\sigma_{3,3}}}\,e_2+\frac{\partial_1\bigl(\sqrt{\sigma_{2,2}}\,v^2\bigr)-\partial_2\bigl(\sqrt{\sigma_{1,1}}\,v^1\bigr)}{\sqrt{\sigma_{1,1}\,\sigma_{2,2}}}\,e_3</math>.
 +
<li>Пусть <math>f\in\mathrm{Func}(\mathbb R^3)</math>; найдем лапласиан функции <math>f</math> в координатах <math>(x^1,x^2,x^3)</math>:<br><math>\Delta f=\mathrm{div}(\nabla f)=\mathrm{div}\Bigl(\frac1{\!\sqrt{\sigma_{1,1}}}\,\partial_1f\;e_1+\frac1{\!\sqrt{\sigma_{2,2}}}\,\partial_2f\;e_2+\frac1{\!\sqrt{\sigma_{3,3}}}\,\partial_3f\;e_3\Bigr)\!=</math><br><math>=\frac1{\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}\,\sigma_{3,3}}}\Bigl(\partial_1\Bigl(\frac{\!\sqrt{\sigma_{2,2}\,\sigma_{3,3}}}{\sqrt{\sigma_{1,1}}}\,\partial_1f\Bigr)+\partial_2\Bigl(\frac{\!\sqrt{\sigma_{1,1}\,\sigma_{3,3}}}{\sqrt{\sigma_{2,2}}}\,\partial_2f\Bigr)+\partial_3\Bigl(\frac{\!\sqrt{\sigma_{1,1}\,\sigma_{2,2}}}{\sqrt{\sigma_{3,3}}}\,\partial_3f\Bigr)\!\Bigr)</math>.</ul>
 +
 
 +
Нетривиальными примерами ортогональной положительно ориентированной системы координат на <math>\mathbb R^3</math> (за исключением множества меры нуль)<br>являются цилиндрическая система координат <math>(\rho,\varphi,z)</math> и сферическая система координат <math>(r,\theta,\varphi)</math>. Ниже найдены функции <math>\sigma_{1,1}</math>, <math>\sigma_{2,2}</math>, <math>\sigma_{3,3}</math> для этих<br>систем координат; используя формулы для этих функций и приведенные выше формулы для дифференциальных операторов, можно найти формулы<br>для рассматриваемых дифференциальных операторов в цилиндрической и сферической системах координат.
 +
 
 +
<ul><li>Функции <math>\sigma_{1,1}</math>, <math>\sigma_{2,2}</math>, <math>\sigma_{3,3}</math> для цилиндрической системы координат:<br><math>\sigma_{1,1}=\Bigl(\frac{\partial(\rho\cos\varphi)}{\partial\rho}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(\rho\sin\varphi)}{\partial\rho}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial\rho}\Bigr)^{\!2}\!=1</math>, <math>\sigma_{2,2}=\Bigl(\frac{\partial(\rho\cos\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(\rho\sin\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial\varphi}\Bigr)^{\!2}\!=\rho^2</math>,<br><math>\sigma_{3,3}=\Bigl(\frac{\partial(\rho\cos\varphi)}{\partial z}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(\rho\sin\varphi)}{\partial z}\Bigr)^{\!2}\!+\Bigl(\frac{\partial z}{\partial z}\Bigr)^{\!2}\!=1</math>.
 +
<li>Функции <math>\sigma_{1,1}</math>, <math>\sigma_{2,2}</math>, <math>\sigma_{3,3}</math> для сферической системы координат:<br><math>\sigma_{1,1}=\Bigl(\frac{\partial(r\sin\theta\cos\varphi)}{\partial r}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\sin\theta\sin\varphi)}{\partial r}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\cos\theta)}{\partial r}\Bigr)^{\!2}\!=1</math>, <math>\sigma_{2,2}=\Bigl(\frac{\partial(r\sin\theta\cos\varphi)}{\partial\theta}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\sin\theta\sin\varphi)}{\partial\theta}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\cos\theta)}{\partial\theta}\Bigr)^{\!2}\!=r^2</math>,<br><math>\sigma_{3,3}=\Bigl(\frac{\partial(r\sin\theta\cos\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\sin\theta\sin\varphi)}{\partial\varphi}\Bigr)^{\!2}\!+\Bigl(\frac{\partial(r\cos\theta)}{\partial\varphi}\Bigr)^{\!2}\!=r^2\sin^2\theta</math>.</ul>

Текущая версия на 17:00, 21 июня 2017

Лектор: Евгений Евгеньевич Горячко.

Преподаватель практики у подгруппы №1: Евгений Евгеньевич Горячко.

Список подгруппы №1 на практике: Иван Абрамов, Евгений Акимов, Роман Васильев, Марк Геллер, Сергей Голованов,
Андрей Крутиков, Рауф Курбанов, Антон Мордберг, Кирилл Пилюгин, Дмитрий Саввинов, Андрей Серебро, Алексей Степанов,
Ильнур Шугаепов, Наталья Ялышева, а также Иван Дмитриевский и Ирина Щукина.

Преподаватель практики у подгруппы №2: Софья Сергеевна Афанасьева.

Список подгруппы №2 на практике: Дмитрий Байдин, Виталий Бибаев, Фёдор Бочаров, Артём Бутомов, Святослав Власов,
Шамиль Гарифуллин, Егор Горбунов, Эдгар Жаворонков, Никита Иванов, Сергей Козлов, Татьяна Кузина, Михаил Митрофанов,
Семён Поляков, Владислав Саенко, Леонид Сташевский, Константин Чаркин.

Файл с домашним заданием на 11-е ноября.

Таблица успеваемости студентов.

Все основные материалы курса имеются на следующих страницах: http://mit.spbau.ru/courses/algstructures и
http://mit.spbau.ru/courses/algstructures_se (а также http://mit.spbau.ru/courses/algstructures_cs для группы CS).

Математическая модель пространства событий в специальной теории относительности

Пропасть, зияющая между нашим повседневным мышлением и нормами математического рассуждения, должна оставаться
неприкосновенной, если мы хотим, чтобы математика выполняла свои функции.
Ю.И. Манин. Математика как метафора

Наша цель — предложить математическую модель пространства событий в специальной теории относительности (далее: СТО) в рамках современных
(но относительно элементарных) алгебры и геометрии и изучить некоторые ее свойства.

  • Глобальная -мерная система координат на множестве — биекция между множествами и .
  • Глобальные -мерные системы координат и на множестве инерциально согласованы в смысле СТО, если замена координат
    преобразование Пуанкаре (композиция специального ортохронного преобразования Лоренца и сдвига), то есть существуют такие
    и , что для любых выполнено .
  • Лемма 1. Отношение инерциальной согласованности в смысле СТО является отношением эквивалентности.
  • Пространство событий в СТО — множество , на котором зафиксирован класс инерциальной согласованности в смысле СТО глобальных
    -мерных систем координат.
  • Инерциальная система координат на пространстве событий в СТО — глобальная -мерная система координат, принадлежащая классу .

Из определения следует, что на пространстве событий в СТО задана более жесткая структура, чем структура -мерного многообразия: на -мерном
многообразии разрешены любые гладкие замены координат, а на пространстве событий в СТО, изучаемом в инерциальных системах координат,
разрешены только замены координат, являющиеся преобразованиями Пуанкаре. Для пространства событий в СТО определены все стандартные
конструкции дифференциальной геометрии, относящиеся к произвольным многообразиям: касательные пространства и кокасательные пространства,
тензорные расслоения и тензорные поля, симметричные и внешние формы и так далее (все эти конструкции инвариантны относительно любых гладких
замен координат и, в частности, инвариантны относительно замен координат, являющихся преобразованиями Пуанкаре). Кроме этих конструкций, для
пространства событий в СТО, изучаемого в инерциальных системах координат, определены специфические конструкции, связанные с тем, что на этом
пространстве рассматриваются только очень жесткие замены координат. Далее мы определяем эти конструкции.

Всюду далее — пространство событий в СТО.

  • Лемма 2. Для любых , и выполнено (здесь — столбец координат вектора относительно базиса
    пространства , определяемого инерциальной системой координат на ).
  • Пусть и ; сумма события и касательного вектора — событие , где .
  • Лемма 3. Определение суммы события и касательного вектора не зависит от выбора инерциальной системы координат на .
  • Пусть ; скалярное произведение на касательном пространстве — невырожденная симметричная билинейная форма
    , где .
  • Лемма 4. Определение скалярного произведения на касательном пространстве не зависит от выбора инерциальной системы координат на .
  • Пусть , , и ; барицентрическая комбинация событий
    с коэффициентами — событие , где .
  • Лемма 5. Определение барицентрической комбинации событий не зависит от выбора инерциальной системы координат на .
  • Пусть ; прямая, проходящая через события и , — множество .
  • Пусть ; разность событий и — скорость в нуле пути (это элемент касательного простр.-ва ).
  • Лемма 6. Для любых и выполнено .
  • Теорема об инвариантных биекциях и изоморфизмах. Пусть ; тогда
    (1) отображения и суть взаимно обратные биекции;
    (2) отображения и суть взаимно обратные изоморфизмы псевдоевклидовых пространств.

Написанные выше утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:
структурой аффинного пространства над каждым касательным пространством (для любых событий и касательных векторов определена их сумма) и
структурой псевдориманова многообразия сигнатуры (для любых касательных векторов, принадлежащих одному касательному пространству,
определено их скалярное произведение), а также на нем имеется параллельный перенос между любыми двумя касательными пространствами.

Дифференциальные операторы на многообразии

Рассмотрим множество как трехмерное риманово ориентированное многообразие, структура которого задана атласом, являющимся классом
согласованности системы координат (эти координаты обозначаются ), метрической формой («метрическим тензором» или «квадратом
элемента длины») и формой объема («элементом объема») (в записи с тензорным произведением
и ).

Пусть — система координат на ; тогда
(1) , и ;
(2) , где для любых
выполнено ;
(3) , где есть якобиан замены координат при переходе от коорд. к коорд. .

Пусть — ортогональная положительно ориентированная система координат на (то есть и ); тогда
и , где .

  • Зафиксируем ортогональную положительно ориентированную систему координат на и обозначим через , и векторные
    поля , и соответственно (они образуют ортонормированный базис в каждом касательном пространстве); тогда
    , и , а также и .
  • Пусть ; тогда
    (1) ;
    (2) .
  • Пусть ; найдем градиент функции в координатах :
    .
  • Пусть ; найдем дивергенцию векторного поля в координатах :


    .
  • Пусть ; найдем ротор векторного поля в координатах :


    .
  • Пусть ; найдем лапласиан функции в координатах :

    .

Нетривиальными примерами ортогональной положительно ориентированной системы координат на (за исключением множества меры нуль)
являются цилиндрическая система координат и сферическая система координат . Ниже найдены функции , , для этих
систем координат; используя формулы для этих функций и приведенные выше формулы для дифференциальных операторов, можно найти формулы
для рассматриваемых дифференциальных операторов в цилиндрической и сферической системах координат.

  • Функции , , для цилиндрической системы координат:
    , ,
    .
  • Функции , , для сферической системы координат:
    , ,
    .