IntroductionToProgrammingLanguages
Теоретические основы языков программирования
Лектор - Дмитрий Юрьевич Булычев
- Первое число - количество правильных ответов
- Второе чисто - количество засчитанных (правильных и грамотно обоснованных) ответов
Результаты второй контрольной так же будут опубликованы по ссылке выше
Содержание
Лекции
- Лекция №1 10.02.2012
- 17.02.2012
В семантике ошибка: правило для переменной вместо
[x](s)=s(x)
читать как
[x](s)=[s(x)](s).
- 24.02.2012
Домашние задания
Задание №1
Cрок сдачи 17 февраля 2011
Написать генерирующее расширения для программы возведения в степень.
int exp (int x, int n) { int y = 1; while (n) { if (n % 2) y *= x; n /= 2; x *= x; } return y; }
Это генерирующее расширение должно для своего единственного параметра n печатать остаточную программу, полученную специализацией функции exp на это значение n. Если это генерирующее расширение сохранит в себе какие-то черты exp, будет совсем хорошо.
Задание №2
Cрок сдачи 24 февраля 2011
Написать принтер, который по абстрактному синтаксическому дереву программы печатает её представление в конкретном синтаксисе (который мы обсуждали) и интерпретатор (который вычисляет значение выражения в данном состоянии).
Описание конкретного синтаксиса для представления программ на языке L:
- Программа представляется в виде последовательности слов. Разделителем служит перевод строки.
- Пусть E --- выражение, а |E| --- представление этого выражения в данном конкретном синтаксисе. Тогда:
- переменная v представляется в виде "x" v (то есть символ x (как терминал), и собственно имя переменной на следующей строчке).
- функция {x -> E} представляется в виде "f" x |E|
- применение функции F E представляется в виде "a" |E| |F|
- условное выражение C ? T : E представляется в виде "?" |C| |T| |E|
- бинарная операция X o Y представляется в виде "@" |X| |Y|
- константа i представляется в виде "!" i
- Контекст (список определений name1=expr1, name2=expr2 и т.д.) представляется как последовательность name1 |expr1| name2 |expr2| и т.д.
- Программа (то есть выражение E в контексте C) представляется как последовательность |C| ";" |E|.
- Все реализации д.з. №2 должны уметь читать файл, содержащий описание программы в таком синтаксисе (иначе невозможно ничего проверить).
Пример 1. Выражение
{x -> {y -> x + y}} 1 2
в данном конкретном синтаксисе выглядит так:
a a f x f y @ + x x x y ! 1 ! 2
Пример 2. Программа
fact = {n -> n ? n * (fact n-1) : 1}; fact 4
будет представлена как
fact f $0 ? x $0 @ * x $0 a x fact @ - x $0 ! 1 ! 1 ; a x fact ! 4
Программа, которая воспринимает программы в языке L в обычном синтаксисе, и печатает их представление в данной упрощенной форме. Бинарник для x86-linux, -h --- помощь.
Задание №3
Желаемый срок сдачи 26 февраля 2011
- Написать порождающую грамматику для языка над алфавитом {a, b, c}, состоящего из всех слов, в которых количество букв a, b и c одинаково.
- Написать порождающую грамматику для языка над алфавитом {0, 1}, состоящего из всех слов, в которых не встречается две единицы подряд.
- Написать порождающую грамматику для языка над алфавитом {0, 1, *}, состоящего из всех слов вида sas, где s --- непустая строка нулей и единиц любой длины, а a --- непустая строка из звездочек любой длины.
- Написать порождающую грамматику для языка над алфавитом {a, b}, состоящего из всех вида a^nb^m, где n <> m.
- Написать порождающую грамматику для языка над алфавитом {a, b}, состоящего из всех слов, в которых количество букв a в два раза больше, чем количество букв b.
- Правда ли, что любой рекурсивный язык контекстно-зависим (обратное, как известно, верно)?
- Написать реализацию построения НКА по регулярной грамматике; написать интерпретатор этого автомата, который проверяет принадлежность заданного слова языку, и принтер, который печатает граф переходов автомата в формате .dot пакета graphviz.
- Написать грамматику для порождения выражений в алфавите {x, +, *, (, )}, где x играет роль операндов, * и + --- левоассоциативные операции (то есть E+F+G означает ((E+F)+G)), операция * связывает операнды сильнее, чем + (то есть E+F*G означает E+(F*G)), причем порождаемые выражения НЕ ДОЛЖНЫ содержать ненужных скобок (а именно, например, выражение x+(x*x) не должно порождаться)
Генератор Залима для проверки 1-5 пунктов. Коментарии:
T -- терминальные символы. Пробелы и запятые игнорируются, т.е. abc == a b c == a b, c Все остальные символы считаются нетерминальными R -- правила преобразования вида: From : to пробелы и пустые строки игнорируются. Кроме того, можно указать свой чекер на JavaScript. Например: 1) return countChar(st, 'a') == countChar(st, 'b') && countChar(st, 'a') == countChar(st, 'c'); 2) return st.indexOf("11") == -1; 3) var matches = /^([10]+)[*]+([10]+)$/g.exec(st); return matches[1] == matches[2] && matches.length == 3; 4) var matches = /^(a*)(b*)$/g.exec(st); return matches.length == 3 && matches[1].length != matches[2].length; 5) return countChar(st, 'a') == countChar(st, 'b') * 2; init -- (пере)инициализация step -- выполнение "одного шага"
Задание №4
- Проверить, что статич. семаника L, которую мы определили на занятии (новая переменная для каждой fun + попарно различные имена в контексте + имена переменных в fun отличаются от имен определений в контексте) действительно позволяет избежать неприятностей при подстановке, когда свободная переменная в подставляемом замыкается каким-то fun в том, куда подставляется.
- Написать на L быстрое возведение в степень и сортировку списка.
- Модифицировать defun и deint и те правила семантики, в которых они используются, чтобы из семантики для вычисления выражения получилась семантика моновариантного специализатора.
- Запустить специализатор для возведения в степень при известном показателе; разобраться и проинтерпретировать результаты.
- Разобраться с вопросом о замкнутости множества всех регулярных языков относительно пересечения.
- Разобраться с вопросом о разрешимости проблемы эквивалентности регулярных грамматик (она же --- проблема эквивалентности конечных автоматов); если разрешима --- разработать и реализовать алгоритм проверки эквивалентности.
- Написать для конечных автоматов:
- Устранение \epsilon - переходов;
- Приведение к детерминированной форме;
- "Объединитель", "дополнитель" и "замыкатель".
Задание №5
- Реализовать преобразование рег. грамматики в рег. выражение, определяющее тот же язык.
- Реализовать обратное преобразование.
Задание №6
Реализовать приведение грамматики в НФХ и алгоритм Кока-Янгера-Касами.
Задание №7
Реализовать интерпретатор НМА и преобразование КС-грамматики в программу для него.
Задание №8
- Написать реализацию вычисления функций FIRST_k и FOLLOW_k.
- Реализовать функцию тестирования грамматики на принадлежность к классу LL(k).
Программа курса
- Языки программирования, синтаксис, семантика, прагматика. Когнитивные особенности человеческого мышления и их влияние на развитие языков программирования.
- Языки программирования в ретроспективе. Процедурное, объектно-ориентированное, логическое и функциональное программирование. Предметно-ориентированные языки. Языки вне классификации.
- Абстрактный и конкретный синтаксис. Статическая и динамическая семантика. Компиляция и интерпретация. Проекции Футамуры-Ершова.
- Генеративный и аналитический подходы к описанию синтаксиса. Формальные грамматики, иерархия Хомского.
- Регулярные языки и конечные автоматы. Применение регулярных выражений в народном хозяйстве (grep/sed/awk) и для лексического анализа (lex/flex). Отсутствие бесконтекстной лексики в реальных языках программирования.
- Контекстно-свободные грамматики. Нормальные формы Хомского и Грейбах. Алгоритмы Эрли и Кока-Янгера-Касами. Неконтекстосвободность реальных языков программирования.
- Нисходящий анализ. Возврат и заглядывание вперед. Класс языков LL(k). Рекурсивный спуск, магазинные автоматы, парсер-комбинаторы, PEG, "скаредный" разбор. GLL. Инструменты нисходящего анализа (Parsec, ANTLR и пр.)
- Восходящий анализ, классы LR(k) и LALR(k). GLR. Инструменты восходящего анализа (yacc/bison).
- Двухуровневые и атрибутные грамматики, вопросы применения на практике.
- Идентификация. Область видимости и область действия. Статическое и динамическое, раннее и позднее связывание.
- Энергичность и ленивость. Call-by-name, call-by-value, call-by-reference.
- Строгость, чистота, прозрачность по ссылкам.
- Языки с типами и языки без типов. Статическая и динамическая типизация.
- Номинальная и структурная эквивалентность типов. Простейшие конструкторы.
- Типы с кванторами и что они означают. Универсальные и экзистенциальные типы.
- Subtyping. Структурный и номинальный subtyping.
- Динамическая семантика языков. Операционная семантика большого и малого шага.
- Денотационный подход к описанию семантики.
- Аксиоматическая семантика. Верификация программ. Design by contract.
- Когерентность языков программирования и машинных архитектур. Языково-специфичные архитектуры, виртуальные машины и JIT-компиляция.
- * Структура рабочей программы. Код, данные, библиотеки, поддержка времени исполнения.
- * Задача генерации кода. Генерация кода путем интерпретации.
- * Восходящее переписывание деревьев и динамическое программирование (BURS).
- * Алгоритмы распределения регистров. Распределение регистров и раскраска графов.
- * Параллелизм на уровне инструкций. Планирование инструкций.
- * Анализ потока управления. Глубинное остовное дерево, доминирование, анализ циклической структуры программ. Сводимость. Устранение недостижимого кода, оптимальная линеаризация.
- * Анализ потока данных. Полурешеточная модель. RD, LV, AE, UEU. Устраненние мертвого кода, экономия общих подвыражений, понижение силы операций, чистка циклов.
* - вопросы будут рассмотрены при наличии времени.
Список литературы
- S.Muchnik. Advanced Compiler Design & Implementation. Academic Press, Morgan Kaufmann, 1998.
- А.Ахо, Р.Сети, С.Ульман. Компиляторы: принципы, технологии, инструменты. Вильямс, 2003.
- А.Ахо, С.Ульман. Теория синтаксического анализа, перевода и компиляции. Том 1. М., "Мир", 1978.
- F.Nielsen. Principles of Program Analysis. Springer, 2005.
- F.Nielse, H-R.Nielsen. Semantics with Applications. Wiley Professional Computing, 1992.
- B.Pierce. Types and Programming Languages. MIT Press, 2002.
- T.Пратт. Языки программирования: разработка и реализация. 1978.
- Б.К.Мартыненко. Языки и трансляции. Из-во СПбГУ, 2008.
Список групп для выполнения задач
- [Haskell] Мартынов Семён, Башоров Залим, Казенюк Сергей, Витвицкий Александр, Тугарёв Денис.
- Кринкин Михаил, Лазарев Сергей, Фофанова Мария, Бандурин Дмитрий, Ждан Анна
- [JAVA] Сорокин Артём, Коровин Алексей, Опейкин Александр, Шеставин Дмитрий, Владислав Савельев
- [C++] Иванов Антон, Крашенинникова Ксения, Лепенькин Ярослав, Диевский Алексей, Кормишин Сергей
- Певзнер Алина, Князев Сергей
- [JAVA] Великий Алексей.
* Не более 5 человек в каждой группе; старайтесь выравнивать группы по уровню, и не повторяться в выборе языков.
Полезные ссылки
JFLAP
JFLAP is software for experimenting with formal languages topics including nondeterministic finite automata, nondeterministic pushdown automata, multi-tape Turing machines, several types of grammars, parsing, and L-systems. In addition to constructing and testing examples for these, JFLAP allows one to experiment with construction proofs from one form to another, such as converting an NFA to a DFA to a minimal state DFA to a regular expression or regular grammar. Click here for more information on what one can do with JFLAP.