Алгебра phys 1 ноябрь–декабрь
Материал из SEWiki
Версия от 20:50, 8 ноября 2016; Goryachko (обсуждение | вклад)
1 Основы алгебры
1.4 Кольца (часть 2)
1.4.1 Делимость в коммутативных кольцах
- Делимость, строгая делимость, ассоциированность в коммут. кольце : ; ; .
- Понятия и в коммут. кольце : и .
- Нормировка в : (если ); нормировка в : старшие коэфф. многочл. , равны (если ).
- Главный идеал — идеал, порожд. одним элементом. Анонс: в и все идеалы главные. Пример неглавного идеала: идеал в .
- Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
(1) ; ; ; ;
(2) ; если идеал главный, то ;
(3) если — область целостности, то , а также ;
(4) и, если в кольце все идеалы главные, то . - Неприводимые и простые эл.-ты: и .
- Примеры: и .
- Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
(1) если — область целостности, то ;
(2) если в кольце все идеалы главные, то ;
(3) для любых следующие два условия эквивалентны: и — область целостности;
(4) если — область целостности, в которой все идеалы главные, то для любых следующие четыре условия эквивалентны:
, , — область целостности, — поле.
1.4.2 Евклидовы кольца и факториальные кольца
- Евклидова норма: , где и .
- Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
- Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
(1) для любых и выполнено ;
(2) не существует такой бесконечной последовательности элементов кольца , что для любых выполнено ;
(3) если , то для любых выполнено ;
(4) в кольце все идеалы главные, а также . - Алгоритм Евклида в евклидовом кольце: и ; на -м шаге и ; тогда .
- Соотношение Безу для элементов и : , где и — коэффициенты Безу; если , то .
- Расширенный алгоритм Евклида в евкл. кольце: и ; на -м шаге и ; тогда .
- Факториальное кольцо — область целостности с -однозначным разложением любого ненулевого элемента в произведение неприводимых элементов.
- Пример: факториально (это основная теорема арифметики). Теорема о факториальности евклидовых колец. Теорема о факториальных кольцах.
Теорема о факториальности евклидовых колец.
(1) Пусть — такая область целостности, что не существует такой бесконечной последовательности элементов кольца , что
для любых выполнено , и, кроме того, ; тогда — факториальное кольцо.
(2) Евклидовы кольца являются факториальными кольцами (и, значит, кольца , , где — поле, , , факториальны).Теорема о факториальных кольцах. Пусть — факториальное кольцо и ; разложим и в произведение неприводимых элементов:
и , где , , попарно неассоциированы и ; тогда
(1) ; ;
(2) ; ; .
1.4.3 Элементарная теория чисел
- Китайская теорема об остатках для евклидовых колец.