Метапрограммирование на C++
Мы рассмотрим несколько техник использования шаблонов C++.
Содержание
Статический assert
В следующем примере приведен код, который компилируется только на 64-разрядной платформе:
char[sizeof(int*)] == 8 ? 1 : -1]
<source>
Если код компилируется не на 64-разрядной платформе, то
sizeof(int*) != 8, что приведет к объявлению массива a отрицательного
размера, а это запрещено стандартом.
Эта идея используется в макросе BOOST_STATIC_ASSERT, предоставляемом
модулем Static Assert библиотеки Boost.
== Tag passing ==
Предположим, нам нужно написать функцию, которая циклически
переставляет элементы массива:
<source lang="cpp">
template<typename It>
void rotate(It p, It, m, It q);
где p, q --- итераторы, указывающие на начало и конец массива, а элемент, на который указывает m, после завершения работы функции будет располагаться на месте элемента, на который указывает p.
Допустим, у нас есть разные реализации этой функции для разных типов итераторов:
template<typename It>
void rotate_bidirectional(It p, It, m, It q);
...
template<typename It>
void rotate_random_access(It p, It, m, It q);
Мы можем добавить к сигнатуре этих функций формальный параметр и перенести информацию о типе итератора, с которым работает эта функция из ее имени в этот параметр:
template<typename It>
void rotate(It p, It, m, It q, bidirectional_tag);
...
template<typename It>
void rotate(It p, It, m, It q, random_access_tag);
Тогда исходную функцию можно реализовать так:
template<typename It>
void rotate(It p, It, m, It q) {
rotate(p, m, q, iterator_traits<It>::iterator_category());
}
Замена числовых идентификаторов на типы
С помощью следующего трюка можно переписать функции, поведение которой зависит от числового идентификатора, на так, чтобы ее поведение зависело от формального параметра (как в предыдущем разделе):
void foo(int);
Мы можем определить шаблонную структуру:
template<int i>
struct int2type {
static const int value = i;
}
Теперь функцию foo можно переписать так:
template<int i>
void foo(int2type<i>);