Алгебра phys 1 сентябрь–октябрь
1 Основы алгебры
| ||||||||||||
|
1.1 Множества, отображения, отношения
1.1.1 Множества
- Логические связки: — отрицание («не»), — дизъюнкция («или»), — конъюнкция («и»), — импликация («влечет»), — эквивалентность.
- Лемма о логических связках. Пусть — высказывания; тогда
(1) , , , ;
(2) , ;
(3) , , , . - Кванторы: — существование («существует»), — всеобщность («для любых»), — существование и единственность («существует единственный»).
- Задание множества перечислением элементов: ; — принадлежность, — пустое множество, — включение, — строгое включение.
- Выделение подмножества: . Операции над множествами: — объединение, — пересечение, — разность, — произведение.
- Лемма об операциях над множествами. Пусть — множества; тогда
(1) , , , ;
(2) , ;
(3) если — множество и , то и . - Числовые множества: , , , — натуральные, целые, рациональные, вещественные числа; и ().
- — порядок (количество элементов) мн.-ва (), — множество подмножеств мн.-ва , — -я степень мн.-ва ().
1.1.2 Отображения
- Множество отображений, действующих из мн.-ва в мн.-во : . Область отобр.-я : , кообласть отобр.-я : . Примеры.
- Образ множества относительно (): , прообраз множества относительно (): , образ отображения : .
- Сужения отображения ( и ): и . Сокращенная запись образа: .
- Инъекции: . Сюръекции: .
- Биекции: . Композиция отображений и : . Тождественное отображение: .
- Теорема о композиции отображений. Пусть — множества и ; тогда
(1) , и, если — множества, и , то ;
(2) если , то — инъекция, если и только если ;
(3) — сюръекция, если и только если ;
(4) — биекция, если и только если . - Отображение , обратное к отображению : и . Пример: взаимно обратные биекции и .
1.1.3 Отношения
- Множество отношений между множествами и : . Область отношения : , кообласть отношения : . Примеры.
- Отношения эквивалентности: .
- Класс эквивалентности: . Утверждение: . Фактормножество: .
- Разбиения: . Утверждение: . Трансверсали.
- Теорема об отношениях эквивалентности и разбиениях. Пусть — множество; тогда отображение — биекция.
- Отношение : . Слои отображения : (). Факторотображение — биекция.
- Утверждение: . Принцип Дирихле. Пусть — множества и ; тогда .
1.2 Группы (часть 1)
1.2.1 Множества с операцией
- Внутренняя -арная операция на мн.-ве — отображение, действующее из в (нульарная операция на — выделенный элемент множества ).
- Гомоморфизмы между мн.-вами с операцией: .
- Изоморфизмы: . Эндоморфизмы мн.-ва с опер.: . Автоморфизмы: .
- Теорема о композиции гомоморфизмов. Пусть и — множества с -арной операцией; тогда
(1) для любых и выполнено ;
(2) для любых выполнено . - Обозначение по Минковскому: . Примеры: , , .
- Инфиксная запись бинарн. опер.-й. Ассоциативность: . Коммутативность (абелевость): .
- Полугруппа — множество с ассоциативной операцией. Гомоморфизмы полугрупп. Примеры полугрупп. Лемма об обобщенной ассоциативности.
Лемма об обобщенной ассоциативности. Пусть — полугруппа, и ; тогда значение выражения не зависит от
расстановки скобок (то есть от порядка выполнения операций при вычислении этого выражения).
1.2.2 Моноиды и группы (основные определения и примеры)
- Моноид — полугруппа с нейтральным элементом (единицей). Единственность единицы, единица как нульарная операция. Гомоморфизмы моноидов.
- Примеры: числовые моноиды, моноиды функций , моноиды слов и , моноиды отображений .
- Обратимые элементы: . Единственность обратного элемента. Утверждение: .
- Группа — моноид, в котором любой элемент обратим. Гомоморфизмы групп. Группа ( — моноид). Таблица Кэли. Изоморфные группы: .
- Примеры: числовые группы, группы остатков, группы функций , свободные группы , группы биекций ().
- Мультипликативные обозначения в группе : , , и (). Аддитивные обозначения в абелевой группе : , , и ().
- Симметрические группы: . Запись перестановки в виде послед.-сти значений. Цикловая запись перестановки. Лемма о циклах.
Лемма о циклах. Пусть , , числа попарно различны и ; тогда
, а также . - Группа изометрий пр.-ва : , где .
1.2.3 Подгруппы, классы смежности, циклические группы
- Подгруппа: . Подгруппа, порожденная мн.-вом : — наименьшая подгруппа, содержащая .
- Утверждение: (в частности, ). Пример: .
- Отношения и : () и (). Утверждение: и .
- Множества классов смежности: и . Теорема Лагранжа. Индекс: .
Теорема Лагранжа. Пусть — группа, и ; тогда (и, значит, делит ).
- Порядок элемента: (). Утверждение: пусть ; тогда .
- Лемма о порядке элемента. Пусть — группа и ; тогда и, если , то делит и .
- Теорема об обратимых остатках.
(1) Пусть и ; тогда .
(2) Пусть ; тогда (в частности, если , то ).
(3) Пусть , и не делит ; тогда (это малая теорема Ферма). - Циклическая группа: . Примеры: для любых , , для некоторых . Теорема о циклических группах.
Теорема о циклических группах. Пусть — циклическая группа и ; тогда, если , то , и, если , то .
1.2.4 Нормальные подгруппы, факторгруппы, прямое произведение групп
- Нормальная подгруппа: . Пример: .
- Автоморфизм сопряжения при помощи элемента : . Отношение сопряженности: и сопряжены.
- Нормальная подгруппа, порожденная множеством : — наименьшая нормальная подгруппа, содержащая . Утверждение: .
- Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.
Теорема о слоях и ядре гомоморфизма. Пусть — группы и ; тогда
(1) для любых и выполнено ;
(2) — инъекция, если и только если . - Факторгруппа: с фактороперациями (). Корректность опред.-я факторопераций. Теорема о гомоморфизме. Пример: .
Теорема о гомоморфизме. Пусть — группы и ; тогда .
- Прямое произведение групп: с покомпонентными операциями. Утверждение: и — гомоморфизмы групп.
- Теорема о прямом произведении. Пусть — группа и ; обозначим через отображение ; тогда
(1) , и ;
(2) ;
(3) если , то в пункте (2) условие "" можно заменить на условие "".
1.3 Кольца (часть 1)
1.3.1 Определения и конструкции, связанные с кольцами
- Кольцо — абелева группа по сложению и моноид по умножению, бинарные операции в которых связаны дистрибутивностью. Гомоморфизмы колец.
- Примеры: числовые кольца, кольца функций. Аддитивная и мультипликативная группы кольца : и . Характеристика кольца : .
- Подкольцо: . Подкольцо, порожд. мн.-вом : . Кольца вида .
- Идеал: . Идеал, порожд. мн.-вом : . Идеал, порожд. элементом коммут. кольца : .
- Ядро и образ гомоморфизма : и . Утверждение: и . Теорема о слоях и ядре гомоморфизма. Примеры.
Теорема о слоях и ядре гомоморфизма. Пусть — кольца и ; тогда
(1) для любых и выполнено ;
(2) — инъекция, если и только если . - Факторкольцо: с фактороперациями (). Теорема о гомоморфизме. Прямое произведение колец: с покомпонентными операциями.
Теорема о гомоморфизме. Пусть — кольца и ; тогда .
- Кольцо без делителей нуля: и . Область целостности — коммут. кольцо без делит. нуля. Тело: .
- Поле — коммутативное тело. Гомоморфизмы полей. Примеры: числовые поля, поля , где . Подполя. Подполе, порожденное мн.-вом.
1.3.2 Кольца многочленов
- Кольцо многочленов от переменной над кольцом : ; отождествл.-е и ; общий вид многочлена: .
- Умножение в . Степень и старший коэфф.-т. Утверждение: . Делимость в ( — комм. кольцо): .
- Неприводимые многочлены в : . Пример: ( — поле).
- Лемма о делении с остатком. Операции и (старший коэфф.-т многочл. обратим): и .
Лемма о делении с остатком. Пусть — коммутативное кольцо, и старший коэффициент многочлена обратим; тогда
существуют единственные такие многочлены , что и . - Кольцо остатков по модулю многочлена ( — поле, ): . Утверждение: .
- Сопоставление многочлену полиномиальной функции — гомоморфизм ( — комм. кольцо, ).
- Обозначение: . Корни многочлена : . Теорема Безу. Теорема о корнях многочлена и следствие из нее.
Теорема Безу. Пусть — коммутативное кольцо, и ; тогда (и, значит, ).
Теорема о корнях многочлена. Пусть — область целостности и ; тогда .
Следствие из теоремы о корнях многочлена. Пусть — область целостности, , и ; тогда .
- Теорема Виета. Пусть — коммутативное кольцо, , и ;
тогда для любых выполнено (в частности, и ).
1.3.3 Поле комплексных чисел
- Кольцо комплексных чисел: , где . Утверждение: . Комплексные числа как точки плоскости .
- Вещественная и мнимая части: и . Сопряжение: . Модуль: .
- Теорема о свойствах комплексных чисел.
(1) Для любых выполнено и, если , то (и, значит, — поле).
(2) Для любых выполнено и (и, значит, отображение — автоморфизм поля ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Единичная окружность в : . Экспонента от комплексного числа : . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты.
(1) Для любых выполнено , а также и .
(2) Для любых выполнено (и, значит, ). - Тригонометрическая форма компл. числа: . Утверждение: .
- Группа корней -й степени из : . Первообразные корни -й степени из .
- Формула Кардано (без доказательства). Алгебраическая замкнутость поля : пусть ; тогда (без доказательства).
- Лемма о вещественных многочленах. Пусть , и ; тогда .
1.3.4 Тело кватернионов
- Кольцо кватернионов: , где , а также , , .
- Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
- Чистые кватернионы: . Скалярное произв.-е, векторное произв.-е и норма в : , и .
- Лемма об умножении кватернионов. Сопряжение: . Модуль: . Утверждение: .
Лемма об умножении кватернионов. Для любых и выполнено .
- Теорема о свойствах кватернионов.
(1) Для любых выполнено и, если , то (и, значит, — тело).
(2) Для любых выполнено и (и, значит, отображение — антиавтоморфизм тела ).
(3) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Трехмерная сфера: . Утверждение: пусть ; тогда опр.-но корректно и явл.-ся изометрией.
- Изометрии в : (доказательство только включения ).
- Изометрии в : (док.-во только ).