Математическая модель пространства событий в специальной теории относительности
| | | | | | | | | | | | Пропасть, зияющая между нашим повседневным мышлением и нормами математического рассуждения, должна оставаться неприкосновенной, если мы хотим, чтобы математика выполняла свои функции. | Ю.И. Манин. Математика как метафора |
|
Наша цель — предложить математическую модель пространства событий в специальной теории относительности (далее: СТО) в рамках современных
(но относительно элементарных) алгебры и геометрии и изучить некоторые ее свойства.
- Глобальная -мерная система координат на множестве — биекция между множествами и .
- Глобальные -мерные системы координат и на множестве инерциально согласованы в смысле СТО, если замена координат —
преобразование Пуанкаре (композиция специального ортохронного преобразования Лоренца и сдвига), то есть существуют такие
и , что для любых выполнено .
- Утверждение 1. Отношение инерциальной согласованности в смысле СТО является отношением эквивалентности.
- Пространство событий в СТО — множество , на котором зафиксирован класс инерциальной согласованности в смысле СТО глобальных
-мерных систем координат.
- Инерциальная система координат на пространстве событий в СТО — глобальная -мерная система координат, принадлежащая классу .
Из определения следует, что на пространстве событий в СТО задана более жесткая структура, чем структура -мерного многообразия: на -мерном
многообразии разрешены любые гладкие замены координат, а на пространстве событий в СТО, изучаемом в инерциальных системах координат,
разрешены только замены координат, являющиеся преобразованиями Пуанкаре. Для пространства событий в СТО определены все стандартные
конструкции дифференциальной геометрии, относящиеся к произвольным многообразиям: касательные пространства и кокасательные пространства,
тензорные расслоения и тензорные поля, симметричные и внешние формы и так далее (все эти конструкции инвариантны относительно любых гладких
замен координат и, в частности, инвариантны относительно замен координат, являющихся преобразованиями Пуанкаре). Кроме этих конструкций, для
пространства событий в СТО, изучаемого в инерциальных системах координат, определены специфические конструкции, связанные с тем, что на этом
пространстве рассматриваются только очень жесткие замены координат. Далее мы определяем эти конструкции.
Зафиксируем пространство событий в СТО; его элементы для простоты будем называть точками (а не событиями).
- Пусть , , и ; барицентрическая комбинация точек с
коэффициентами — точка , где .
- Утверждение 2. Определение барицентрической комбинации точек не зависит от выбора инерциальной системы координат на .
- Пусть ; прямая, проходящая через точки и , — множество .
- Пусть ; разность точек и — скорость в нуле пути (это элемент касательного пространства ).
- Утверждение 3. Для любых и выполнено (здесь — столбец координат вектора
относительно базиса пространства , определяемого инерциальной системой координат на ).
- Пусть и ; сумма точки и касательного вектора — точка , где .
- Утверждение 4. Для любых , и выполнено .
- Утверждение 5. Определение суммы точки и касательного вектора не зависит от выбора инерциальной системы координат на .
- Пусть ; скалярное произведение на касательном пространстве — невырожденная симметричная билинейная форма
, где .
- Утверждение 6. Определение скалярного произведения на касательном простр.-ве не зависит от выбора инерциальной системы координат на .
- Теорема об инвариантных биекциях и изоморфизмах. Пусть ; тогда
(1) отображения и суть взаимно обратные биекции;
(2) отображения и суть взаимно обратные изоморфизмы псевдоевклидовых пространств.
Доказанные утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:
структурой аффинного пространства над каждым касательным пространством и структурой псевдориманова многообразия сигнатуры , а также
на нем имеется параллельный перенос между любыми двумя касательными пространствами.