Алгебраические структуры 5 2015 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 15: Строка 15:
 
Зафиксируем пространство событий <math>M</math> в СТО; его элементы для простоты будем называть точками (а не событиями).
 
Зафиксируем пространство событий <math>M</math> в СТО; его элементы для простоты будем называть точками (а не событиями).
  
<ul><li>Пусть <math>k\in\mathbb N</math>, <math>m_1,\ldots,m_k\in M</math>, <math>\tau_1,\ldots,\tau_k\in\mathbb R</math> и <math>\tau_1+\ldots+\tau_k=1</math>; <i>барицентрическая комбинация</i> <math>\tau_1m_1+\ldots+\tau_km_k</math> точек <math>m_1,\ldots,m_k</math> с<br>коэффициентами <math>\tau_1,\ldots,\tau_k</math> — точка <math>\alpha^{-1}(\tau_1\alpha(m_1)+\ldots+\tau_k\alpha(m_k))</math>, где <math>\alpha\in\mathcal A_M</math>.
+
<ul><li><u>Утверждение 2.</u> Для любых <math>m\in M</math>, <math>v\in\mathrm T_mM</math> и <math>\alpha,\tilde\alpha\in\mathcal A_M</math> выполнено <math>v^\tilde\alpha\!=\Lambda_\alpha^\tilde\alpha\!\cdot v^\alpha</math> (здесь <math>v^\alpha</math> — столбец координат вектора <math>v</math> относительно<br>базиса <math>\Bigl\{\frac\partial{\partial x^0}(m),\frac\partial{\partial x^1}(m),\frac\partial{\partial x^2}(m),\frac\partial{\partial x^3}(m)\Bigr\}</math> пространства <math>\mathrm T_mM</math>, определяемого инерциальной системой координат <math>\alpha</math> на <math>M</math>).
<li><u>Утверждение 2.</u> Определение барицентрической комбинации точек не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
+
<li>Пусть <math>m,n\in M</math>; <i>прямая</i>, проходящая через точки <math>m</math> и <math>n</math>, — множество <math>\{(1-\tau)m+\tau\,n\mid\tau\in\mathbb R\}</math>.
+
<li>Пусть <math>m,n\in M</math>; <i>разность</i> <math>n-m</math> точек <math>m</math> и <math>n</math> — скорость в нуле пути <math>\biggl(\!\begin{align}\mathbb R&\to M\\\tau&\mapsto(1-\tau)m+\tau\,n\end{align}\!\biggr)</math> (это элемент касательного пространства <math>\mathrm T_mM</math>).
+
<li><u>Утверждение 3.</u> Для любых <math>m,n\in M</math> и <math>\alpha\in\mathcal A_M</math> выполнено <math>(n-m)^\alpha\!=\alpha(n)-\alpha(m)</math> (здесь <math>(n-m)^\alpha</math> — столбец координат вектора <math>n-m</math><br>относительно базиса <math>\Bigl\{\frac\partial{\partial x^0}(m),\frac\partial{\partial x^1}(m),\frac\partial{\partial x^2}(m),\frac\partial{\partial x^3}(m)\Bigr\}</math> пространства <math>\mathrm T_mM</math>, определяемого инерциальной системой координат <math>\alpha</math> на <math>M</math>).
+
 
<li>Пусть <math>m,n\in M</math> и <math>v\in\mathrm T_mM</math>; <i>сумма</i> <math>n+v</math> точки <math>n</math> и касательного вектора <math>v</math> — точка <math>\alpha^{-1}(\alpha(n)+v^\alpha)</math>, где <math>\alpha\in\mathcal A_M</math>.
 
<li>Пусть <math>m,n\in M</math> и <math>v\in\mathrm T_mM</math>; <i>сумма</i> <math>n+v</math> точки <math>n</math> и касательного вектора <math>v</math> — точка <math>\alpha^{-1}(\alpha(n)+v^\alpha)</math>, где <math>\alpha\in\mathcal A_M</math>.
<li><u>Утверждение 4.</u> Для любых <math>m\in M</math>, <math>v\in\mathrm T_mM</math> и <math>\alpha,\tilde\alpha\in\mathcal A_M</math> выполнено <math>v^\tilde\alpha\!=\Lambda_\alpha^\tilde\alpha\!\cdot v^\alpha</math>.
+
<li><u>Утверждение 3.</u> Определение суммы точки и касательного вектора не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
<li><u>Утверждение 5.</u> Определение суммы точки и касательного вектора не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
+
 
<li>Пусть <math>m\in M</math>; <i>скалярное произведение</i> <math>g(m)</math> на касательном пространстве <math>\mathrm T_mM</math> — невырожденная симметричная билинейная форма<br><math>\biggl(\!\begin{align}\mathrm T_mM\times\mathrm T_mM&\to\mathbb R\\(v,w)&\mapsto(v^\alpha)^\mathtt T\!\cdot\mathrm{diag}(1,-1,-1,-1)\cdot w^\alpha\end{align}\!\biggr)</math>, где <math>\alpha\in\mathcal A_M</math>.
 
<li>Пусть <math>m\in M</math>; <i>скалярное произведение</i> <math>g(m)</math> на касательном пространстве <math>\mathrm T_mM</math> — невырожденная симметричная билинейная форма<br><math>\biggl(\!\begin{align}\mathrm T_mM\times\mathrm T_mM&\to\mathbb R\\(v,w)&\mapsto(v^\alpha)^\mathtt T\!\cdot\mathrm{diag}(1,-1,-1,-1)\cdot w^\alpha\end{align}\!\biggr)</math>, где <math>\alpha\in\mathcal A_M</math>.
<li><u>Утверждение 6.</u> Определение скалярного произведения на касательном простр.-ве не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
+
<li><u>Утверждение 4.</u> Определение скалярного произведения на касательном простр.-ве не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
<li><u>Теорема об инвариантных биекциях и изоморфизмах.</u> Пусть <math>m,n\in M</math>; тогда<br>(1) отображения <math>\biggl(\!\begin{align}M&\to\mathrm T_mM\\n&\mapsto n-m\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm T_mM&\to M\\v&\mapsto m+v\end{align}\!\biggr)</math> суть взаимно обратные биекции;<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathrm T_nM\\v&\mapsto(n+v)-n\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm T_nM&\to\mathrm T_mM\\v&\mapsto(m+v)-m\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы псевдоевклидовых пространств.</ul>
+
<li>Пусть <math>k\in\mathbb N</math>, <math>m_1,\ldots,m_k\in M</math>, <math>\tau_1,\ldots,\tau_k\in\mathbb R</math> и <math>\tau_1+\ldots+\tau_k=1</math>; <i>барицентрическая комбинация</i> <math>\tau_1m_1+\ldots+\tau_km_k</math> точек <math>m_1,\ldots,m_k</math> с<br>коэффициентами <math>\tau_1,\ldots,\tau_k</math> — точка <math>\alpha^{-1}(\tau_1\alpha(m_1)+\ldots+\tau_k\alpha(m_k))</math>, где <math>\alpha\in\mathcal A_M</math>.
 +
<li><u>Утверждение 5.</u> Определение барицентрической комбинации точек не зависит от выбора инерциальной системы координат <math>\alpha</math> на <math>M</math>.
 +
<li>Пусть <math>m,n\in M</math>; <i>прямая</i>, проходящая через точки <math>m</math> и <math>n</math>, — множество <math>\{(1-\tau)m+\tau\,n\mid\tau\in\mathbb R\}</math>.
 +
<li>Пусть <math>m,n\in M</math>; <i>разность</i> <math>n-m</math> точек <math>m</math> и <math>n</math> — скорость в нуле пути <math>\biggl(\!\begin{align}\mathbb R&\to M\\\tau&\mapsto(1-\tau)m+\tau\,n\end{align}\!\biggr)</math> (это элемент касательного пространства <math>\mathrm T_mM</math>).
 +
<li><u>Утверждение 6.</u> Для любых <math>m,n\in M</math> и <math>\alpha\in\mathcal A_M</math> выполнено <math>(n-m)^\alpha\!=\alpha(n)-\alpha(m)</math>.
 +
<li><u>Теорема об инвариантных биекциях и изоморфизмах.</u> Пусть <math>m,n\in M</math>; тогда<br>(1) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to M\\v&\mapsto m+v\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}M&\to\mathrm T_mM\\n&\mapsto n-m\end{align}\!\biggr)</math> суть взаимно обратные биекции;<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm T_mM&\to\mathrm T_nM\\v&\mapsto(n+v)-n\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm T_nM&\to\mathrm T_mM\\v&\mapsto(m+v)-m\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы псевдоевклидовых пространств.</ul>
  
 
Доказанные утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:<br>структурой аффинного пространства над каждым касательным пространством и структурой псевдориманова многообразия сигнатуры <math>(1,3)</math>, а также<br>на нем имеется параллельный перенос между любыми двумя касательными пространствами.
 
Доказанные утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:<br>структурой аффинного пространства над каждым касательным пространством и структурой псевдориманова многообразия сигнатуры <math>(1,3)</math>, а также<br>на нем имеется параллельный перенос между любыми двумя касательными пространствами.

Версия 03:50, 13 декабря 2016

Математическая модель пространства событий в специальной теории относительности

Пропасть, зияющая между нашим повседневным мышлением и нормами математического рассуждения, должна оставаться
неприкосновенной, если мы хотим, чтобы математика выполняла свои функции.
Ю.И. Манин. Математика как метафора

Наша цель — предложить математическую модель пространства событий в специальной теории относительности (далее: СТО) в рамках современных
(но относительно элементарных) алгебры и геометрии и изучить некоторые ее свойства.

  • Глобальная -мерная система координат на множестве — биекция между множествами и .
  • Глобальные -мерные системы координат и на множестве инерциально согласованы в смысле СТО, если замена координат
    преобразование Пуанкаре (композиция специального ортохронного преобразования Лоренца и сдвига), то есть существуют такие
    и , что для любых выполнено .
  • Утверждение 1. Отношение инерциальной согласованности в смысле СТО является отношением эквивалентности.
  • Пространство событий в СТО — множество , на котором зафиксирован класс инерциальной согласованности в смысле СТО глобальных
    -мерных систем координат.
  • Инерциальная система координат на пространстве событий в СТО — глобальная -мерная система координат, принадлежащая классу .

Из определения следует, что на пространстве событий в СТО задана более жесткая структура, чем структура -мерного многообразия: на -мерном
многообразии разрешены любые гладкие замены координат, а на пространстве событий в СТО, изучаемом в инерциальных системах координат,
разрешены только замены координат, являющиеся преобразованиями Пуанкаре. Для пространства событий в СТО определены все стандартные
конструкции дифференциальной геометрии, относящиеся к произвольным многообразиям: касательные пространства и кокасательные пространства,
тензорные расслоения и тензорные поля, симметричные и внешние формы и так далее (все эти конструкции инвариантны относительно любых гладких
замен координат и, в частности, инвариантны относительно замен координат, являющихся преобразованиями Пуанкаре). Кроме этих конструкций, для
пространства событий в СТО, изучаемого в инерциальных системах координат, определены специфические конструкции, связанные с тем, что на этом
пространстве рассматриваются только очень жесткие замены координат. Далее мы определяем эти конструкции.

Зафиксируем пространство событий в СТО; его элементы для простоты будем называть точками (а не событиями).

  • Утверждение 2. Для любых , и выполнено (здесь — столбец координат вектора относительно
    базиса пространства , определяемого инерциальной системой координат на ).
  • Пусть и ; сумма точки и касательного вектора — точка , где .
  • Утверждение 3. Определение суммы точки и касательного вектора не зависит от выбора инерциальной системы координат на .
  • Пусть ; скалярное произведение на касательном пространстве — невырожденная симметричная билинейная форма
    , где .
  • Утверждение 4. Определение скалярного произведения на касательном простр.-ве не зависит от выбора инерциальной системы координат на .
  • Пусть , , и ; барицентрическая комбинация точек с
    коэффициентами — точка , где .
  • Утверждение 5. Определение барицентрической комбинации точек не зависит от выбора инерциальной системы координат на .
  • Пусть ; прямая, проходящая через точки и , — множество .
  • Пусть ; разность точек и — скорость в нуле пути (это элемент касательного пространства ).
  • Утверждение 6. Для любых и выполнено .
  • Теорема об инвариантных биекциях и изоморфизмах. Пусть ; тогда
    (1) отображения и суть взаимно обратные биекции;
    (2) отображения и суть взаимно обратные изоморфизмы псевдоевклидовых пространств.

Доказанные утверждения показывают, что пространство событий в СТО обладает следующими дополнительными инвариантными структурами:
структурой аффинного пространства над каждым касательным пространством и структурой псевдориманова многообразия сигнатуры , а также
на нем имеется параллельный перенос между любыми двумя касательными пространствами.