Алгебра phys 1 ноябрь–декабрь — различия между версиями
Материал из SEWiki
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 37: | Строка 37: | ||
<p><u>Лемма о свойствах формальной производной.</u> <i>Пусть <math>R</math> — кольцо; тогда для любых <math>f,g\in R[x]</math> и <math>r\in R</math> выполнено <math>(f+g)'=f'\!+g'</math> (и, значит,<br>отображение <math>\,'</math> — эндоморфизм группы <math>R[x]^+</math>) и <math>(rf)'=rf'</math>, а также <math>(fg)'=f'g+f\,g'</math> (это правило Лейбница).</i></p> | <p><u>Лемма о свойствах формальной производной.</u> <i>Пусть <math>R</math> — кольцо; тогда для любых <math>f,g\in R[x]</math> и <math>r\in R</math> выполнено <math>(f+g)'=f'\!+g'</math> (и, значит,<br>отображение <math>\,'</math> — эндоморфизм группы <math>R[x]^+</math>) и <math>(rf)'=rf'</math>, а также <math>(fg)'=f'g+f\,g'</math> (это правило Лейбница).</i></p> | ||
<li>Корень <math>r</math> кратности <math>k</math> многочлена <math>f</math>: <math>(x-r)^k\,|\,f\,\land\,\lnot\bigl((x-r)^{k+1}\,|\,f\bigr)\;\Leftrightarrow\;\exists\,g\in R[x]\;\bigl(f=(x-r)^kg\,\land\,g(r)\ne0\bigr)</math>. Теорема о кратных корнях. | <li>Корень <math>r</math> кратности <math>k</math> многочлена <math>f</math>: <math>(x-r)^k\,|\,f\,\land\,\lnot\bigl((x-r)^{k+1}\,|\,f\bigr)\;\Leftrightarrow\;\exists\,g\in R[x]\;\bigl(f=(x-r)^kg\,\land\,g(r)\ne0\bigr)</math>. Теорема о кратных корнях. | ||
− | <p><u>Теорема о кратных корнях.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>f\in R[x]</math>, <math>r\in R</math> и <math>k\in\mathbb N</math>; тогда<br>(1) если <math>r</math> — корень кратности не меньше <math>k</math> многочлена <math>f</math>, то <math>r</math> — корень кратности не меньше <math>k-1</math> многочлена <math>f'</math>;<br>(2) если <math>R</math> — область целостности, <math>\mathrm{char}\,R</math> не делит <math>k</math> и <math>r</math> — корень кратности <math>k</math> многочлена <math>f</math>, то <math>r</math> — корень кратности <math>k-1</math> многочлена <math>f'</math>;<br>(3) <math>r</math> — кратный корень многочлена <math>f</math> (то есть корень кратности не меньше <math>2</math>), если и только если <math>r</math> — корень многочленов <math>f</math> и <math>f'</math>.</i></p></ul> | + | <p><u>Теорема о кратных корнях.</u> <i>Пусть <math>R</math> — коммутативное кольцо, <math>f\in R[x]</math>, <math>r\in R</math> и <math>k\in\mathbb N</math>; тогда<br>(1) если <math>r</math> — корень кратности не меньше <math>k</math> многочлена <math>f</math>, то <math>r</math> — корень кратности не меньше <math>k-1</math> многочлена <math>f'</math>;<br>(2) если <math>R</math> — область целостности, <math>\mathrm{char}\,R</math> не делит <math>k</math> и <math>r</math> — корень кратности <math>k</math> многочлена <math>f</math>, то <math>r</math> — корень кратности <math>k-1</math> многочлена <math>f'</math>;<br>(3) <math>r</math> — кратный корень многочлена <math>f</math> (то есть корень кратности не меньше <math>2</math>), если и только если <math>r</math> — корень многочленов <math>f</math> и <math>f'</math>.</i></p> |
+ | <li><u>Теорема об интерполяции.</u> Пусть <math>K</math> — поле, <math>n\in\mathbb N</math>, <math>c_1,\ldots,c_n,e_1,\ldots,e_n\in K</math> и <math>c_1,\ldots,c_n</math> попарно различны; тогда существует единственный такой<br>многочлен <math>f\in K[x]</math>, что <math>\deg f<n</math> и для любых <math>i\in\{1,\ldots,n\}</math> выполнено <math>f(c_i)=e_i</math>, и этот многочлен можно найти следующими способами:<br>(1) <math>f=\sum_{i=1}^ne_il_i</math>, где <math>\forall\,i\in\{1,\ldots,n\}\;\biggl(l_i=\frac{(x-c_1)\cdot\ldots\cdot(x-c_{i-1})\cdot(x-c_{i+1})\cdot\ldots\cdot(x-c_n)}{(c_i-c_1)\cdot\ldots\cdot(c_i-c_{i-1})\cdot(c_i-c_{i+1})\cdot\ldots\cdot(c_i-c_n)}\biggr)</math> (это интерполяционная формула Лагранжа);<br>(2) <math>f=f_n</math>, где <math>f_0=0</math> и <math>\forall\,i\in\{1,\ldots,n\}\;\biggl(f_i=f_{i-1}+\bigl(e_i-f_{i-1}(c_i)\bigr)\frac{(x-c_1)\cdot\ldots\cdot(x-c_{i-1})}{(c_i-c_1)\cdot\ldots\cdot(c_i-c_{i-1})}\biggr)</math> (это интерполяционная формула Ньютона).</ul> |
Версия 01:00, 17 ноября 2016
1 Основы алгебры
1.4 Кольца (часть 2)
1.4.1 Делимость в коммутативных кольцах
- Делимость, строгая делимость, ассоциированность в коммут. кольце : ; ; .
- Понятия и в коммут. кольце : и .
- Нормировка и (если они не ): — в кольце ; старшие коэфф.-ты и равны — в кольце .
- Главный идеал — идеал, порожд. одним элементом. Анонс: в и все идеалы главные. Пример неглавного идеала: идеал в .
- Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
(1) ; ; ; ;
(2) если — область целостности, то , а также ;
(3) ; если идеал главный, то ;
(4) и, если в кольце все идеалы главные, то . - Неприводимые и простые эл.-ты: и .
- Примеры: и .
- Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
(1) если — область целостности, то ;
(2) если в кольце все идеалы главные, то ;
(3) для любых следующие два высказывания эквивалентны: и — область целостности;
(4) если — область целостности, в которой все идеалы главные, то для любых следующие четыре высказывания эквивалентны:
, , — область целостности, — поле.
1.4.2 Евклидовы кольца и факториальные кольца
- Евклидова норма: , где и .
- Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
- Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
(1) для любых и выполнено ;
(2) не существует такой бесконечной последовательности элементов кольца , что для любых выполнено ;
(3) если , то для любых выполнено ;
(4) в кольце все идеалы главные, а также . - Факториальное кольцо — область целостности с -однозначным разложением любого ненулевого элемента в произведение неприводимых элементов.
- Примеры: — факториальное кольцо (это основная теорема арифметики); если факториально, то и факториально (без доказательства).
- Теорема о факториальности евклидовых колец.
(1) Пусть — такая область целостности, что не существует такой бесконечной последовательности элементов кольца , что
для любых выполнено , и, кроме того, ; тогда — факториальное кольцо.
(2) Евклидовы кольца являются факториальными кольцами (и, значит, кольца и , где — поле, факториальны). - Теорема о факториальных кольцах. Пусть — факториальное кольцо и ; разложим и в произведение неприводимых элементов:
и , где , , попарно неассоциированы и ; тогда
(1) ; ;
(2) ; ; .
1.4.3 Алгоритм Евклида, китайская теорема об остатках, функция Эйлера
- Алгоритм Евклида в евклидовом кольце: и ; на -м шаге и ; тогда .
- Соотношение Безу для элементов и : , где и — коэффициенты Безу; если , то .
- Расширенный алгоритм Евклида в евкл. кольце: и ; на -м шаге и ; тогда .
- Китайская теорема об остатках для евклидовых колец. Пусть — евклидово кольцо, , и попарно взаимно
просты (то есть ); обозначим через элемент кольца ; тогда отображение
определено корректно и является изоморфизмом колец. - Китайская теорема об остатках для целых чисел и многочленов.
(1) Пусть , и попарно взаимно просты (); обозначим через
число ; тогда отображение — изоморфизм колец.
(2) Пусть — поле, , и попарно взаимно просты ();
обозначим через многочлен ; тогда отображение — изоморфизм колец. - Функция Эйлера: . Пример: если , то . Теорема Эйлера и следствие из нее.
Теорема Эйлера. Пусть , и ; тогда .
Следствие из теоремы Эйлера. Пусть , , и ; тогда .
- Теорема о функции Эйлера.
(1) Пусть и ; тогда .
(2) Пусть и ; тогда .
(3) Пусть ; разложим в произведение простых чисел: , где , , попарно различны и
; тогда .
1.4.4 Кольца многочленов (revisited)
- Сопоставление многочлену формальной производной . Лемма о свойствах формальной производной.
Лемма о свойствах формальной производной. Пусть — кольцо; тогда для любых и выполнено (и, значит,
отображение — эндоморфизм группы ) и , а также (это правило Лейбница). - Корень кратности многочлена : . Теорема о кратных корнях.
Теорема о кратных корнях. Пусть — коммутативное кольцо, , и ; тогда
(1) если — корень кратности не меньше многочлена , то — корень кратности не меньше многочлена ;
(2) если — область целостности, не делит и — корень кратности многочлена , то — корень кратности многочлена ;
(3) — кратный корень многочлена (то есть корень кратности не меньше ), если и только если — корень многочленов и . - Теорема об интерполяции. Пусть — поле, , и попарно различны; тогда существует единственный такой
многочлен , что и для любых выполнено , и этот многочлен можно найти следующими способами:
(1) , где (это интерполяционная формула Лагранжа);
(2) , где и (это интерполяционная формула Ньютона).