Алгебра phys 2 ноябрь–декабрь — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 7: Строка 7:
 
<h3>3.4&nbsp; Тензорные произведения векторных пространств</h3>
 
<h3>3.4&nbsp; Тензорные произведения векторных пространств</h3>
 
<h5>3.4.1&nbsp; Определения, конструкции и основные теоремы, связанные с тензорами</h5>
 
<h5>3.4.1&nbsp; Определения, конструкции и основные теоремы, связанные с тензорами</h5>
<ul><li>Тензорное произв.-е пространств: <math>V_1\otimes\ldots\otimes V_k=\mathcal F/\mathcal F_0</math>, где <math>\mathcal F=\mathrm{FinFunc}(V_1\times\ldots\times V_k,K)</math> и <math>\mathcal F_0</math> — пространство полилинеаризации.
+
<ul><li>Тензорное произв.-е пространств: <math>V_1\otimes\ldots\otimes V_k=\mathcal F/\mathcal F_0</math>, где <math>\mathcal F=\mathrm{FinFunc}(V_1\times\ldots\times V_k,K)</math> и <math>\mathcal F_0</math> — подпространство полилинеаризации.
 
<li>Разложимые тензоры: <math>v_1\otimes\ldots\otimes v_k=(v_1,\ldots,v_k)+\mathcal F_0</math>. Утверждение: <math>V_1\otimes\ldots\otimes V_k=\langle\{v_1\otimes\ldots\otimes v_k\mid v_1\in V_1,\ldots,v_k\in V_k\}\rangle</math>.
 
<li>Разложимые тензоры: <math>v_1\otimes\ldots\otimes v_k=(v_1,\ldots,v_k)+\mathcal F_0</math>. Утверждение: <math>V_1\otimes\ldots\otimes V_k=\langle\{v_1\otimes\ldots\otimes v_k\mid v_1\in V_1,\ldots,v_k\in V_k\}\rangle</math>.
 
<li>Ранг тензора <math>T</math>: <math>\mathrm{rk}(T)</math> равен минимальному среди всех таких чисел <math>m\in\mathbb N_0</math>, что <math>T=T_1+\ldots+T_m</math>, где <math>T_1,\ldots,T_m</math> — разложимые тензоры.
 
<li>Ранг тензора <math>T</math>: <math>\mathrm{rk}(T)</math> равен минимальному среди всех таких чисел <math>m\in\mathbb N_0</math>, что <math>T=T_1+\ldots+T_m</math>, где <math>T_1,\ldots,T_m</math> — разложимые тензоры.
 
<li><u>Теорема об универсальности тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k,Y</math> — векторные пространства над полем <math>K</math>;<br>тогда отображение <math>\biggl(\!\begin{align}V_1\times\ldots\times V_k&\to V_1\otimes\ldots\otimes V_k\\(v_1,\ldots,v_k)&\mapsto v_1\otimes\ldots\otimes v_k\end{align}\!\biggr)</math> полилинейно, и для любых <math>\omega\in\mathrm{Multi}(V_1,\ldots,V_k,Y)</math> существует единственный<br>такой гомоморфизм <math>a\in\mathrm{Hom}(V_1\otimes\ldots\otimes V_k,Y)</math>, что для любых <math>v_1\in V_1,\ldots,v_k\in V_k</math> выполнено <math>a(v_1\otimes\ldots\otimes v_k)=\omega(v_1,\ldots,v_k)</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{Hom}(V_1\otimes\ldots\otimes V_k,Y)&\to\mathrm{Multi}(V_1,\ldots,V_k,Y)\\a&\mapsto\bigl((v_1,\ldots,v_k)\mapsto a(v_1\otimes\ldots\otimes v_k)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм векторных пространств).</i>
 
<li><u>Теорема об универсальности тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k,Y</math> — векторные пространства над полем <math>K</math>;<br>тогда отображение <math>\biggl(\!\begin{align}V_1\times\ldots\times V_k&\to V_1\otimes\ldots\otimes V_k\\(v_1,\ldots,v_k)&\mapsto v_1\otimes\ldots\otimes v_k\end{align}\!\biggr)</math> полилинейно, и для любых <math>\omega\in\mathrm{Multi}(V_1,\ldots,V_k,Y)</math> существует единственный<br>такой гомоморфизм <math>a\in\mathrm{Hom}(V_1\otimes\ldots\otimes V_k,Y)</math>, что для любых <math>v_1\in V_1,\ldots,v_k\in V_k</math> выполнено <math>a(v_1\otimes\ldots\otimes v_k)=\omega(v_1,\ldots,v_k)</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{Hom}(V_1\otimes\ldots\otimes V_k,Y)&\to\mathrm{Multi}(V_1,\ldots,V_k,Y)\\a&\mapsto\bigl((v_1,\ldots,v_k)\mapsto a(v_1\otimes\ldots\otimes v_k)\bigr)\!\end{align}\!\biggr)</math> — изоморфизм векторных пространств).</i>
<li><u>Теорема о базисе тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math>, <math>V_1,\ldots,V_k</math> — векторные пространства над полем <math>K</math> и <math>B_1,\ldots,B_k</math> —<br>базисы пространств <math>V_1,\ldots,V_k</math> соотв.-но; тогда множество <math>\{b_1\otimes\ldots\otimes b_k\mid b_1\in B_1,\ldots,b_k\in B_k\}</math> базис пространства <math>V_1\otimes\ldots\otimes V_k</math>,<br>а также, если <math>\dim V_1,\ldots,\dim V_k<\infty</math>, то <math>\dim(V_1\otimes\ldots\otimes V_k)=\dim V_1\cdot\ldots\cdot\dim V_k</math>.</i>
+
<li><u>Теорема о базисе тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math>, <math>V_1,\ldots,V_k</math> — векторные пространства над полем <math>K</math> и <math>B_1,\ldots,B_k</math> —<br>базисы пространств <math>V_1,\ldots,V_k</math> соответственно; тогда все тензоры <math>b_1\otimes\ldots\otimes b_k</math>, где <math>b_1\in B_1,\ldots,b_k\in B_k</math>, попарно различны и вместе<br>образуют базис пространства <math>V_1\otimes\ldots\otimes V_k</math>, а также, если <math>\dim V_1,\ldots,\dim V_k<\infty</math>, то <math>\dim(V_1\otimes\ldots\otimes V_k)=\dim V_1\cdot\ldots\cdot\dim V_k</math>.</i>
 
<li><u>Первая теорема о канонических изоморфизмах.</u> <i>Пусть <math>K</math> — поле и <math>U,V,W</math> — векторные пространства над полем <math>K</math>; тогда<br><math>(U\otimes V)\otimes W\cong U\otimes(V\otimes W)\cong U\otimes V\otimes W</math> и <math>V\otimes K\cong K\otimes V\cong V</math>, а также <math>V\otimes W\cong W\otimes V</math>.</i>
 
<li><u>Первая теорема о канонических изоморфизмах.</u> <i>Пусть <math>K</math> — поле и <math>U,V,W</math> — векторные пространства над полем <math>K</math>; тогда<br><math>(U\otimes V)\otimes W\cong U\otimes(V\otimes W)\cong U\otimes V\otimes W</math> и <math>V\otimes K\cong K\otimes V\cong V</math>, а также <math>V\otimes W\cong W\otimes V</math>.</i>
 
<li>Тензорное произв.-е тензоров: <math>T\otimes T'</math>. Тензорное произв.-е гомоморфизмов (<math>a\in\mathrm{Hom}(V,Y),b\in\mathrm{Hom}(W,Z)</math>): <math>(a\otimes b)(v\otimes w)=a(v)\otimes b(w)</math>.
 
<li>Тензорное произв.-е тензоров: <math>T\otimes T'</math>. Тензорное произв.-е гомоморфизмов (<math>a\in\mathrm{Hom}(V,Y),b\in\mathrm{Hom}(W,Z)</math>): <math>(a\otimes b)(v\otimes w)=a(v)\otimes b(w)</math>.
Строка 42: Строка 42:
 
<p><u>Лемма о симметризации и альтернировании.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) для любых <math>u\in\mathrm S_k</math> выполнено <math>\mathrm{lat}_u\!\circ\mathrm{sym}_k=\mathrm{sym}_k</math> и <math>\mathrm{lat}_u\!\circ\mathrm{alt}_k=\mathrm{sgn}(u)\,\mathrm{alt}_k</math>;<br>(2) для любых <math>T\in\mathsf S^kV</math> выполнено <math>\mathrm{sym}_k(T)=T</math> и для любых <math>T\in\mathsf\Lambda^kV</math> выполнено <math>\mathrm{alt}_k(T)=T</math>;<br>(3) <math>\mathrm{Im}\,\mathrm{sym}_k=\mathsf S^kV</math>, <math>\mathrm{sym}_k^2=\mathrm{sym}_k</math> и <math>\,\mathrm{Im}\,\mathrm{alt}_k=\mathsf\Lambda^kV</math>, <math>\mathrm{alt}_k^2=\mathrm{alt}_k</math> (то есть <math>\mathrm{sym}_k</math> — проектор на <math>\,\mathsf S^kV</math> и <math>\mathrm{alt}_k</math> — проектор на <math>\,\mathsf\Lambda^kV</math>).</i></p>
 
<p><u>Лемма о симметризации и альтернировании.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) для любых <math>u\in\mathrm S_k</math> выполнено <math>\mathrm{lat}_u\!\circ\mathrm{sym}_k=\mathrm{sym}_k</math> и <math>\mathrm{lat}_u\!\circ\mathrm{alt}_k=\mathrm{sgn}(u)\,\mathrm{alt}_k</math>;<br>(2) для любых <math>T\in\mathsf S^kV</math> выполнено <math>\mathrm{sym}_k(T)=T</math> и для любых <math>T\in\mathsf\Lambda^kV</math> выполнено <math>\mathrm{alt}_k(T)=T</math>;<br>(3) <math>\mathrm{Im}\,\mathrm{sym}_k=\mathsf S^kV</math>, <math>\mathrm{sym}_k^2=\mathrm{sym}_k</math> и <math>\,\mathrm{Im}\,\mathrm{alt}_k=\mathsf\Lambda^kV</math>, <math>\mathrm{alt}_k^2=\mathrm{alt}_k</math> (то есть <math>\mathrm{sym}_k</math> — проектор на <math>\,\mathsf S^kV</math> и <math>\mathrm{alt}_k</math> — проектор на <math>\,\mathsf\Lambda^kV</math>).</i></p>
 
<li>Симметрич. произведение векторов: <math>v_1\cdot\ldots\cdot v_k=\mathrm{sym}_k(v_1\otimes\ldots\otimes v_k)</math>. Внешнее произведение векторов: <math>v_1\wedge\ldots\wedge v_k=k!\,\mathrm{alt}_k(v_1\otimes\ldots\otimes v_k)</math>.
 
<li>Симметрич. произведение векторов: <math>v_1\cdot\ldots\cdot v_k=\mathrm{sym}_k(v_1\otimes\ldots\otimes v_k)</math>. Внешнее произведение векторов: <math>v_1\wedge\ldots\wedge v_k=k!\,\mathrm{alt}_k(v_1\otimes\ldots\otimes v_k)</math>.
<li><u>Теорема о базисе симметрической степени и базисе внешней степени.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math>,<br><math>k\in\mathbb N_0</math>, <math>\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда<br>(1) множество <math>\{e_{i_1}\!\cdot\ldots\cdot e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1\le\ldots\le i_k\}</math> базис пространства <math>\,\mathsf S^kV</math>, а также <math>\dim\mathsf S^kV=\!\biggl(\!\!\binom nk\!\!\biggr)\!=\binom{n+k-1}k</math>;<br>(2) множество <math>\{e_{i_1}\!\wedge\ldots\wedge e_{i_k}\!\mid i_1,\ldots,i_k\in\{1,\ldots,n\},\,i_1<\ldots<i_k\}</math> базис пространства <math>\,\mathsf\Lambda^kV</math>, а также <math>\dim\mathsf\Lambda^kV=\binom nk</math>.</i>
+
<li><u>Теорема о базисе симметрической степени и базисе внешней степени.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math>,<br><math>k\in\mathbb N_0</math>, <math>\dim V<\infty</math> и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда<br>(1) все тензоры <math>e_{i_1}\!\cdot\ldots\cdot e_{i_k}</math>, где <math>i_1,\ldots,i_k\in\{1,\ldots,n\}</math> и <math>i_1\le\ldots\le i_k</math>, попарно различны и вместе образуют базис пространства <math>\,\mathsf S^kV</math>;<br>(2) все тензоры <math>e_{i_1}\!\wedge\ldots\wedge e_{i_k}</math>, где <math>i_1,\ldots,i_k\in\{1,\ldots,n\}</math> и <math>i_1<\ldots<i_k</math>, попарно различны и вместе образуют базис пространства <math>\,\mathsf\Lambda^kV</math>;<br>(3) <math>\dim\mathsf S^kV=\!\biggl(\!\!\binom nk\!\!\biggr)\!=\binom{n+k-1}k=\frac{(n+k-1)!}{k!\,(n-1)!}</math> и <math>\,\dim\mathsf\Lambda^kV=\binom nk=\frac{n!}{k!\,(n-k)!}</math>.</i>
 
<li>Симметричный тензор в координатах: <math>T=\!\!\!\!\sum_{i_1\le\ldots\le i_k}\!\!\!\!\stackrel eT\!\,^{(i_1,\ldots,i_k)}e_{i_1}\!\cdot\ldots\cdot e_{i_k}</math>. Антисимметричный тензор в координатах: <math>T=\!\!\!\!\sum_{i_1<\ldots<i_k}\!\!\!\!\stackrel eT\!\,^{[i_1,\ldots,i_k]}e_{i_1}\!\wedge\ldots\wedge e_{i_k}</math>.
 
<li>Симметричный тензор в координатах: <math>T=\!\!\!\!\sum_{i_1\le\ldots\le i_k}\!\!\!\!\stackrel eT\!\,^{(i_1,\ldots,i_k)}e_{i_1}\!\cdot\ldots\cdot e_{i_k}</math>. Антисимметричный тензор в координатах: <math>T=\!\!\!\!\sum_{i_1<\ldots<i_k}\!\!\!\!\stackrel eT\!\,^{[i_1,\ldots,i_k]}e_{i_1}\!\wedge\ldots\wedge e_{i_k}</math>.
 
<li>Примеры: <math>\mathrm{vol}^e=e^1\wedge\ldots\wedge e^n</math> — форма объема, связанная с <math>e</math>, <math>v\wedge w=(v\times w)^3\,e_1\wedge e_2-(v\times w)^2\,e_1\wedge e_3+(v\times w)^1\,e_2\wedge e_3</math> (<math>v,w\in K^3</math>).</ul>
 
<li>Примеры: <math>\mathrm{vol}^e=e^1\wedge\ldots\wedge e^n</math> — форма объема, связанная с <math>e</math>, <math>v\wedge w=(v\times w)^3\,e_1\wedge e_2-(v\times w)^2\,e_1\wedge e_3+(v\times w)^1\,e_2\wedge e_3</math> (<math>v,w\in K^3</math>).</ul>
  
<h5>3.5.2&nbsp; Симметрическая и внешняя алгебры</h5>
+
<h5>3.5.2&nbsp; Симметрическая алгебра и внешняя алгебра</h5>
 
<ul><li>Симметрич. и внешняя степени гомоморфизма: <math>a^{\cdot k}\!=(a^{\otimes k})|_{\mathsf S^kV\to\mathsf S^kY}</math> и <math>a^{\wedge k}\!=(a^{\otimes k})|_{\mathsf\Lambda^kV\to\mathsf\Lambda^kY}</math> (корректность следует из <math>a^{\otimes k}\!\circ\mathrm{lat}_u=\mathrm{lat}_u\!\circ a^{\otimes k}</math>).
 
<ul><li>Симметрич. и внешняя степени гомоморфизма: <math>a^{\cdot k}\!=(a^{\otimes k})|_{\mathsf S^kV\to\mathsf S^kY}</math> и <math>a^{\wedge k}\!=(a^{\otimes k})|_{\mathsf\Lambda^kV\to\mathsf\Lambda^kY}</math> (корректность следует из <math>a^{\otimes k}\!\circ\mathrm{lat}_u=\mathrm{lat}_u\!\circ a^{\otimes k}</math>).
 
<li>Утверждение: <i>пусть <math>a\in\mathrm{Hom}(V,Y)</math> и <math>v_1,\ldots,v_k\in V</math>; тогда <math>a^{\cdot k}(v_1\cdot\ldots\cdot v_k)=a(v_1)\cdot\ldots\cdot a(v_k)</math> и <math>a^{\wedge k}(v_1\wedge\ldots\wedge v_k)=a(v_1)\wedge\ldots\wedge a(v_k)</math></i>.
 
<li>Утверждение: <i>пусть <math>a\in\mathrm{Hom}(V,Y)</math> и <math>v_1,\ldots,v_k\in V</math>; тогда <math>a^{\cdot k}(v_1\cdot\ldots\cdot v_k)=a(v_1)\cdot\ldots\cdot a(v_k)</math> и <math>a^{\wedge k}(v_1\wedge\ldots\wedge v_k)=a(v_1)\wedge\ldots\wedge a(v_k)</math></i>.
 
<li>Симметрическое произведение тензоров: <math>T\cdot T'=\mathrm{sym}_{k+k'}(T\otimes T')</math>. Внешнее произведение тензоров: <math>T\wedge T'=\frac{(k+k')!}{k!\,k'!}\,\mathrm{alt}_{k+k'}(T\otimes T')</math>.
 
<li>Симметрическое произведение тензоров: <math>T\cdot T'=\mathrm{sym}_{k+k'}(T\otimes T')</math>. Внешнее произведение тензоров: <math>T\wedge T'=\frac{(k+k')!}{k!\,k'!}\,\mathrm{alt}_{k+k'}(T\otimes T')</math>.
<li>Симметрическая (симметрич. контравар. тензоров) и внешняя (антисимметрич. контравар. тензоров) алгебры: <math>\mathsf S^\bullet V=\bigoplus_{k=0}^\infty\mathsf S^kV</math> и <math>\mathsf\Lambda^\bullet V=\bigoplus_{k=0}^\infty\mathsf\Lambda^kV</math>.</ul>
+
<li>Симметрическая (симметрич. контравар. тензоров) и внешняя (антисимметрич. контравар. тензоров) алгебры: <math>\mathsf S^\bullet V=\bigoplus_{k=0}^\infty\mathsf S^kV</math> и <math>\mathsf\Lambda^\bullet V=\bigoplus_{k=0}^\infty\mathsf\Lambda^kV</math>.
 +
<li><u>Лемма о симметрическом произведении и внешнем произведении.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math>,<br><math>k,k',k''\!\in\mathbb N_0</math> и <math>T\in\mathcal T^kV</math>, <math>T'\!\in\mathcal T^{k'}\!V</math>, <math>T''\!\in\mathcal T^{k''}\!V</math>; тогда<br>(1) <math>\mathrm{sym}_k(T)\cdot T'=T\cdot\mathrm{sym}_{k'}(T')=T\cdot T'</math> и <math>\mathrm{alt}_k(T)\wedge T'=T\wedge\mathrm{alt}_{k'}(T')=T\wedge T'</math>;<br>(2) <math>(T\cdot T')\cdot T''=T\cdot(T'\cdot T'')=\mathrm{sym}_{k+k'+k''}(T\otimes T'\otimes T'')</math> и <math>(T\wedge T')\wedge T''=T\wedge(T'\wedge T'')=\frac{(k+k'+k'')!}{k!\,k'!\,k''!}\,\mathrm{alt}_{k+k'+k''}(T\otimes T'\otimes T'')</math>;<br>(3) для любых <math>v_1,\ldots,v_k\in V</math> выполнено <math>(\ldots(v_1\cdot v_2)\cdot\ldots\cdot v_{k-1})\cdot v_k=v_1\cdot\ldots\cdot v_k</math> и <math>(\ldots(v_1\wedge v_2)\wedge\ldots\wedge v_{k-1})\wedge v_k=v_1\wedge\ldots\wedge v_k</math>.</i>
 +
<li><u>Теорема о симметрической алгебре и внешней алгебре.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math> и <math>V</math> — векторное пространство над полем <math>K</math>.</i></ul>

Версия 01:20, 13 ноября 2016

3  Билинейная и полилинейная алгебра

В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)
или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-
менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.
Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-
ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих
пространств, хотя принципиальная возможность применения его в более общих случаях остается.
Статья «Тензор» в русскоязычной Википедии
In the 20th century, the subject came to be known as tensor analysis, and achieved broader acceptance with the introduction of Einstein's the-
ory of general relativity, around 1915. General relativity is formulated completely in the language of tensors. Einstein had learned about them,
with great difficulty, from the geometer Marcel Grossmann. Tullio Levi-Civita then initiated a correspondence with Einstein to correct mistakes
Einstein had made in his use of tensor analysis. The correspondence lasted 1915–1917, and was characterized by mutual respect: "I admire
the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while the like of
us have to make our way laboriously on foot" (from Einstein's letter to Levi-Civita).
Статья «Tensor» в англоязычной Википедии

3.4  Тензорные произведения векторных пространств

3.4.1  Определения, конструкции и основные теоремы, связанные с тензорами
  • Тензорное произв.-е пространств: , где и — подпространство полилинеаризации.
  • Разложимые тензоры: . Утверждение: .
  • Ранг тензора : равен минимальному среди всех таких чисел , что , где — разложимые тензоры.
  • Теорема об универсальности тензорного произведения. Пусть — поле, и — векторные пространства над полем ;
    тогда отображение полилинейно, и для любых существует единственный
    такой гомоморфизм , что для любых выполнено
    (и, значит, отображение — изоморфизм векторных пространств).
  • Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и
    базисы пространств соответственно; тогда все тензоры , где , попарно различны и вместе
    образуют базис пространства , а также, если , то .
  • Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
    и , а также .
  • Тензорное произв.-е тензоров: . Тензорное произв.-е гомоморфизмов (): .
  • Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
    (1) отображение — инъективный гомоморфизм векторных пространств, а также,
    если , то данное отображение — изоморфизм векторных пространств;
    (2) отображение — инъективный гомоморфизм векторных пространств, а также, если , то
    данное отображение — изоморфизм векторных пространств;
    (3) отображения и — инъективные гомоморфизмы векторных
    пространств, а также, если , то данные отображения — изоморфизмы векторных пространств.
3.4.2  Тензорные алгебры и тензоры в координатах
  • Пространство тензоров типа : . Примеры: , , , , .
  • Примеры: — пространство структур алгебры на , — пространство структур коалгебры на .
  • Утверждение: . Алгебры контравариантных и ковариантных тензоров над : и .
  • Тензор в координатах: . Примеры: , , .
  • Примеры: — метрический тензор, — форма объема.
  • Преобразование координат: (здесь и ).
3.4.3  Операции над тензорами
  • Перестановки компонент тензоров в общем случае. Представление группы в простр.-ве : .
  • Тензорное произведение тензоров в координатах: . Кронекеровское произведение матриц.
  • Свертка по паре : .
  • Свертка по паре в координатах: . Теорема о свертках тензоров малой валентности.

    Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых , и выполнено , , и ;
    (2) для любых и выполнено и .

  • Теорема об обратном метрическом тензоре. Пусть — поле, — векторное пространство над полем , и ; тогда
    (1) прообраз гомоморфизма относительно изоморфизма равен тензору ;
    (2) если форма невырождена, то, обозначая через прообраз гомоморфизма относительно изоморфизма
    (тензор — тензор типа , обратный к тензору ), для любых имеем следующий факт: .
  • Опускание индекса: .
  • Подъем индекса: .
  • Опускание и подъем в координатах: и .

3.5  Симметрические и внешние степени векторных пространств

3.5.1  Определения и конструкции, связанные с симметричными и антисимметричными тензорами
  • Симметрическая и внешняя степени: и .
  • Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах. Пусть — поле, , — векторное
    пространство над полем и ; обозначим через изоморфизм ; тогда
    (1) для любых , обозначая через автоморфизм , имеем следующие факты:
    , , ;
    (2) и (и, значит, и ).
  • Операторы симметризации и альтернирования: и . Лемма о симметризации и альтернировании.

    Лемма о симметризации и альтернировании. Пусть — поле, , — векторное пространство над полем и ; тогда
    (1) для любых выполнено и ;
    (2) для любых выполнено и для любых выполнено ;
    (3) , и , (то есть — проектор на и — проектор на ).

  • Симметрич. произведение векторов: . Внешнее произведение векторов: .
  • Теорема о базисе симметрической степени и базисе внешней степени. Пусть — поле, , — векторное пространство над полем ,
    , и ; обозначим через число ; тогда
    (1) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
    (2) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
    (3) и .
  • Симметричный тензор в координатах: . Антисимметричный тензор в координатах: .
  • Примеры: — форма объема, связанная с , ().
3.5.2  Симметрическая алгебра и внешняя алгебра
  • Симметрич. и внешняя степени гомоморфизма: и (корректность следует из ).
  • Утверждение: пусть и ; тогда и .
  • Симметрическое произведение тензоров: . Внешнее произведение тензоров: .
  • Симметрическая (симметрич. контравар. тензоров) и внешняя (антисимметрич. контравар. тензоров) алгебры: и .
  • Лемма о симметрическом произведении и внешнем произведении. Пусть — поле, , — векторное пространство над полем ,
    и , , ; тогда
    (1) и ;
    (2) и ;
    (3) для любых выполнено и .
  • Теорема о симметрической алгебре и внешней алгебре. Пусть — поле, и — векторное пространство над полем .