Алгебра phys 1 ноябрь–декабрь — различия между версиями
Материал из SEWiki
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 8: | Строка 8: | ||
<li>Нормировка в <math>\mathbb Z</math>: <math>\mathrm{gcd}(a,b),\mathrm{lcm}(a,b)\in\mathbb N</math> (если <math>a\,b\ne0</math>); нормировка в <math>K[x]</math>: старшие коэфф. многочл. <math>\mathrm{gcd}(f,g)</math>, <math>\mathrm{lcm}(f,g)</math> равны <math>1</math> (если <math>f\,g\ne0</math>). | <li>Нормировка в <math>\mathbb Z</math>: <math>\mathrm{gcd}(a,b),\mathrm{lcm}(a,b)\in\mathbb N</math> (если <math>a\,b\ne0</math>); нормировка в <math>K[x]</math>: старшие коэфф. многочл. <math>\mathrm{gcd}(f,g)</math>, <math>\mathrm{lcm}(f,g)</math> равны <math>1</math> (если <math>f\,g\ne0</math>). | ||
<li>Главный идеал — идеал, порожд. одним элементом. Анонс: в <math>\mathbb Z</math> и <math>K[x]</math> все идеалы главные. Пример неглавного идеала: идеал <math>(2)+(x)</math> в <math>\mathbb Z[x]</math>. | <li>Главный идеал — идеал, порожд. одним элементом. Анонс: в <math>\mathbb Z</math> и <math>K[x]</math> все идеалы главные. Пример неглавного идеала: идеал <math>(2)+(x)</math> в <math>\mathbb Z[x]</math>. | ||
− | <li><u>Теорема о делимости и главных идеалах.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>r,s,t\in R</math>; тогда<br>(1) <math>s\,|\,r\,\Leftrightarrow\,(r)\subseteq(s)</math>; <math>s\,|\!\!|\!\!|\,r\,\Leftrightarrow\,(r)\subset(s)</math>; <math>r\;\overset{\scriptscriptstyle\mid}\sim\;s\,\Leftrightarrow\,(r)=(s)</math>; <math>r\in R^\times\Leftrightarrow\,r\;\overset{\scriptscriptstyle\mid}\sim\;1\,\Leftrightarrow\,(r)=R</math>;<br>(2) <math> | + | <li><u>Теорема о делимости и главных идеалах.</u> <i>Пусть <math>R</math> — коммутативное кольцо и <math>r,s,t\in R</math>; тогда<br>(1) <math>s\,|\,r\,\Leftrightarrow\,(r)\subseteq(s)</math>; <math>s\,|\!\!|\!\!|\,r\,\Leftrightarrow\,(r)\subset(s)</math>; <math>r\;\overset{\scriptscriptstyle\mid}\sim\;s\,\Leftrightarrow\,(r)=(s)</math>; <math>r\in R^\times\Leftrightarrow\,r\;\overset{\scriptscriptstyle\mid}\sim\;1\,\Leftrightarrow\,(r)=R</math>;<br>(2) если <math>R</math> — область целостности, то <math>r\ne0\;\Rightarrow\;\forall\,a,b\in R\;\bigl(a\,r=b\,r\,\Rightarrow\,a=b\bigr)</math>, а также <math>r\;\overset{\scriptscriptstyle\mid}\sim\;s\;\Leftrightarrow\;\exists\,\varepsilon\in R^\times\bigl(r=\varepsilon\,s\bigr)</math>;<br>(3) <math>t\;\overset{\scriptscriptstyle\mid}\sim\;\mathrm{lcm}(r,s)\,\Leftrightarrow\,(t)=(r)\cap(s)</math>; если идеал <math>(r)+(s)</math> главный, то <math>t\;\overset{\scriptscriptstyle\mid}\sim\;\mathrm{gcd}(r,s)\,\Leftrightarrow\,(t)=(r)+(s)</math>;<br>(4) <math>(R/(r))^\times\!=\{a+(r)\in R/(r)\mid(a)+(r)=R\}</math> и, если в кольце <math>R</math> все идеалы главные, то <math>(R/(r))^\times\!=\{a+(r)\in R/(r)\mid\mathrm{gcd}(a,r)\;\overset{\scriptscriptstyle\mid}\sim\;1\}</math>.</i> |
<li>Неприводимые и простые эл.-ты: <math>\mathrm{Irr}(R)=(R\!\setminus\!R^\times\!)\setminus\{s\,t\mid s,t\in R\!\setminus\!R^\times\!\}</math> и <math>\mathrm{Prime}(R)=\{r\in R\!\setminus\!(R^\times\!\cup\{0\})\mid\forall\,s,t\in R\;\bigl(r\,|\,s\,t\,\Rightarrow\,r\,|\,s\,\lor\,r\,|\,t\bigr)\}</math>. | <li>Неприводимые и простые эл.-ты: <math>\mathrm{Irr}(R)=(R\!\setminus\!R^\times\!)\setminus\{s\,t\mid s,t\in R\!\setminus\!R^\times\!\}</math> и <math>\mathrm{Prime}(R)=\{r\in R\!\setminus\!(R^\times\!\cup\{0\})\mid\forall\,s,t\in R\;\bigl(r\,|\,s\,t\,\Rightarrow\,r\,|\,s\,\lor\,r\,|\,t\bigr)\}</math>. | ||
<li>Примеры: <math>\mathrm{Irr}(\mathbb C[x])=\{a\,x+b\mid a,b\in\mathbb C,\,a\ne0\}</math> и <math>\mathrm{Irr}(\mathbb R[x])=\{a\,x+b\mid a,b\in\mathbb R,\,a\ne0\}\cup\{a\,x^2+b\,x+c\mid a,b,c\in\mathbb R,\,b^2-4a\,c<0\}</math>. | <li>Примеры: <math>\mathrm{Irr}(\mathbb C[x])=\{a\,x+b\mid a,b\in\mathbb C,\,a\ne0\}</math> и <math>\mathrm{Irr}(\mathbb R[x])=\{a\,x+b\mid a,b\in\mathbb R,\,a\ne0\}\cup\{a\,x^2+b\,x+c\mid a,b,c\in\mathbb R,\,b^2-4a\,c<0\}</math>. |
Версия 17:30, 9 ноября 2016
1 Основы алгебры
1.4 Кольца (часть 2)
1.4.1 Делимость в коммутативных кольцах
- Делимость, строгая делимость, ассоциированность в коммут. кольце : ; ; .
- Понятия и в коммут. кольце : и .
- Нормировка в : (если ); нормировка в : старшие коэфф. многочл. , равны (если ).
- Главный идеал — идеал, порожд. одним элементом. Анонс: в и все идеалы главные. Пример неглавного идеала: идеал в .
- Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
(1) ; ; ; ;
(2) если — область целостности, то , а также ;
(3) ; если идеал главный, то ;
(4) и, если в кольце все идеалы главные, то . - Неприводимые и простые эл.-ты: и .
- Примеры: и .
- Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
(1) если — область целостности, то ;
(2) если в кольце все идеалы главные, то ;
(3) для любых следующие два условия эквивалентны: и — область целостности;
(4) если — область целостности, в которой все идеалы главные, то для любых следующие четыре условия эквивалентны:
, , — область целостности, — поле.
1.4.2 Евклидовы кольца и факториальные кольца
- Евклидова норма: , где и .
- Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
- Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
(1) для любых и выполнено ;
(2) не существует такой бесконечной последовательности элементов кольца , что для любых выполнено ;
(3) если , то для любых выполнено ;
(4) в кольце все идеалы главные, а также . - Факториальное кольцо — область целостности с -однозначным разложением любого ненулевого элемента в произведение неприводимых элементов.
- Примеры: — факториальное кольцо (это основная теорема арифметики); если факториально, то и факториально (без доказательства).
- Теорема о факториальности евклидовых колец.
(1) Пусть — такая область целостности, что не существует такой бесконечной последовательности элементов кольца , что
для любых выполнено , и, кроме того, ; тогда — факториальное кольцо.
(2) Евклидовы кольца являются факториальными кольцами (и, значит, кольца и , где — поле, факториальны). - Теорема о факториальных кольцах. Пусть — факториальное кольцо и ; разложим и в произведение неприводимых элементов:
и , где , , попарно неассоциированы и ; тогда
(1) ; ;
(2) ; ; .
1.4.3 Алгоритм Евклида, китайская теорема об остатках, функция Эйлера
- Алгоритм Евклида в евклидовом кольце: и ; на -м шаге и ; тогда .
- Соотношение Безу для элементов и : , где и — коэффициенты Безу; если , то .
- Расширенный алгоритм Евклида в евкл. кольце: и ; на -м шаге и ; тогда .
- Китайская теорема об остатках для евклидовых колец. Пусть — евклидово кольцо, , и попарно взаимно
просты (то есть ); обозначим через элемент кольца ; тогда отображение
определено корректно и является изоморфизмом колец. - Китайская теорема об остатках для целых чисел и многочленов.
(1) Пусть , и попарно взаимно просты (); обозначим через
число ; тогда отображение — изоморфизм колец.
(2) Пусть — поле, , и попарно взаимно просты ();
обозначим через многочлен ; тогда отображение — изоморфизм колец. - Функция Эйлера: . Пример: если , то . Теорема Эйлера и следствие из нее.
Теорема Эйлера. Пусть , и ; тогда .
Следствие из теоремы Эйлера. Пусть , , и ; тогда .
- Теорема о функции Эйлера.
(1) Пусть и ; тогда .
(2) Пусть и ; тогда .
(3) Пусть ; разложим в произведение простых чисел: , где , , попарно различны и
; тогда .