Алгебра phys 1 ноябрь–декабрь — различия между версиями
Материал из SEWiki
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 11: | Строка 11: | ||
<li>Неприводимые и простые эл.-ты: <math>\mathrm{Irr}(R)=(R\!\setminus\!R^\times\!)\setminus\{s\,t\mid s,t\in R\!\setminus\!R^\times\!\}</math> и <math>\mathrm{Prime}(R)=\{r\in R\!\setminus\!(R^\times\!\cup\{0\})\mid\forall\,s,t\in R\;\bigl(r\,|\,s\,t\,\Rightarrow\,r\,|\,s\,\lor\,r\,|\,t\bigr)\}</math>. | <li>Неприводимые и простые эл.-ты: <math>\mathrm{Irr}(R)=(R\!\setminus\!R^\times\!)\setminus\{s\,t\mid s,t\in R\!\setminus\!R^\times\!\}</math> и <math>\mathrm{Prime}(R)=\{r\in R\!\setminus\!(R^\times\!\cup\{0\})\mid\forall\,s,t\in R\;\bigl(r\,|\,s\,t\,\Rightarrow\,r\,|\,s\,\lor\,r\,|\,t\bigr)\}</math>. | ||
<li>Примеры: <math>\mathrm{Irr}(\mathbb C[x])=\{a\,x+b\mid a,b\in\mathbb C,\,a\ne0\}</math> и <math>\mathrm{Irr}(\mathbb R[x])=\{a\,x+b\mid a,b\in\mathbb R,\,a\ne0\}\cup\{a\,x^2+b\,x+c\mid a,b,c\in\mathbb R,\,b^2-4a\,c<0\}</math>. | <li>Примеры: <math>\mathrm{Irr}(\mathbb C[x])=\{a\,x+b\mid a,b\in\mathbb C,\,a\ne0\}</math> и <math>\mathrm{Irr}(\mathbb R[x])=\{a\,x+b\mid a,b\in\mathbb R,\,a\ne0\}\cup\{a\,x^2+b\,x+c\mid a,b,c\in\mathbb R,\,b^2-4a\,c<0\}</math>. | ||
− | <li><u>Теорема о неприводимых и простых элементах.</u> <i>Пусть <math>R</math> — коммутативное кольцо; тогда<br>(1) если <math>R</math> — область целостности, то <math>\,\mathrm{Prime}(R)\subseteq\mathrm{Irr}(R)</math>;<br>(2) если в кольце <math>R</math> все идеалы главные, то <math>\,\mathrm{Irr}(R)\subseteq\mathrm{Prime}(R)</math>;<br>(3) для любых <math>r\in R\!\setminus\!\{0\}</math> следующие условия эквивалентны: <math>r\in\mathrm{Prime}(R)</math> и <math>R/(r)</math> — область целостности;<br>(4) если <math>R</math> — область целостности, в которой все идеалы главные, то для любых <math>r\in R\!\setminus\!\{0\}</math> следующие условия эквивалентны:<br><math>r\in\mathrm{Irr}(R)</math>, <math>r\in\mathrm{Prime}(R)</math>, <math>R/(r)</math> — область целостности, <math>R/(r)</math> — поле.</i></ul> | + | <li><u>Теорема о неприводимых и простых элементах.</u> <i>Пусть <math>R</math> — коммутативное кольцо; тогда<br>(1) если <math>R</math> — область целостности, то <math>\,\mathrm{Prime}(R)\subseteq\mathrm{Irr}(R)</math>;<br>(2) если в кольце <math>R</math> все идеалы главные, то <math>\,\mathrm{Irr}(R)\subseteq\mathrm{Prime}(R)</math>;<br>(3) для любых <math>r\in R\!\setminus\!\{0\}</math> следующие два условия эквивалентны: <math>r\in\mathrm{Prime}(R)</math> и <math>R/(r)</math> — область целостности;<br>(4) если <math>R</math> — область целостности, в которой все идеалы главные, то для любых <math>r\in R\!\setminus\!\{0\}</math> следующие четыре условия эквивалентны:<br><math>r\in\mathrm{Irr}(R)</math>, <math>r\in\mathrm{Prime}(R)</math>, <math>R/(r)</math> — область целостности, <math>R/(r)</math> — поле.</i></ul> |
<h5>1.4.2 Евклидовы кольца и факториальные кольца</h5> | <h5>1.4.2 Евклидовы кольца и факториальные кольца</h5> | ||
− | <ul><li>Евклидова норма | + | <ul><li>Евклидова норма: <math>\nu\colon R\to N</math>, где <math>N\subseteq\mathbb N_0\cup\{-\infty\}</math> и <math>\forall\,r\in R\!\setminus\!\{0\},\,s\in R\;\Bigl(\exists\,q,t\in R\;\bigl(s=qr+t\,\land\,\nu(t)<\nu(r)\bigr)\,\land\,\bigl(s\,|\,r\,\Rightarrow\,\nu(s)\le\nu(r)\bigr)\Bigr)</math>. |
<li>Евклидово кольцо — область целостности с евклидовой нормой. Примеры: <math>\mathbb Z</math> (<math>\nu(a)=|a|</math>); <math>K[x]</math> (<math>\nu(f)=\deg f</math>); <math>\mathbb Z[\mathrm i]</math>, <math>\mathbb Z[\sqrt2\,\mathrm i]</math>, <math>\mathbb Z[\mathrm e^{\frac{2\pi}3\mathrm i}]</math> (<math>\nu(a)=|a|^2</math>). | <li>Евклидово кольцо — область целостности с евклидовой нормой. Примеры: <math>\mathbb Z</math> (<math>\nu(a)=|a|</math>); <math>K[x]</math> (<math>\nu(f)=\deg f</math>); <math>\mathbb Z[\mathrm i]</math>, <math>\mathbb Z[\sqrt2\,\mathrm i]</math>, <math>\mathbb Z[\mathrm e^{\frac{2\pi}3\mathrm i}]</math> (<math>\nu(a)=|a|^2</math>). | ||
− | <li><u>Теорема о евклидовых кольцах.</u> <i>Пусть <math>R</math> — евклидово кольцо с евклидовой нормой <math>\nu</math>; тогда</i></ul> | + | <li><u>Теорема о евклидовых кольцах.</u> <i>Пусть <math>R</math> — евклидово кольцо с евклидовой нормой <math>\nu</math>; тогда<br>(1) для любых <math>r\in R\!\setminus\!\{0\}</math> и <math>s\in R</math> выполнено <math>s\,|\!\!|\!\!|\,r\,\Rightarrow\,\nu(s)<\nu(r)</math>;<br>(2) если <math>I\trianglelefteq R</math>, то для любых <math>r\in I\!\setminus\!\{0\}</math> выполнено <math>I=(r)\,\Leftrightarrow\,\nu(r)=\min\{\nu(i)\mid i\in I\!\setminus\!\{0\}\}</math>;<br>(3) в кольце <math>R</math> все идеалы главные и, значит, <math>\mathrm{Irr}(R)=\mathrm{Prime}(R)</math>.</i></ul> |
<h5>1.4.3 Элементарная теория чисел</h5> | <h5>1.4.3 Элементарная теория чисел</h5> |
Версия 00:10, 8 ноября 2016
1 Основы алгебры
1.4 Кольца (часть 2)
1.4.1 Делимость в коммутативных кольцах
- Делимость, строгая делимость, ассоциированность в коммут. кольце : ; ; .
- Понятия и в коммут. кольце : и .
- Нормировка в : (если ); нормировка в : старшие коэфф. многочл. , равны (если ).
- Главный идеал — идеал, порожд. одним элементом. Анонс: в и все идеалы главные. Пример неглавного идеала: идеал в .
- Теорема о делимости и главных идеалах. Пусть — коммутативное кольцо и ; тогда
(1) ; ; ; ;
(2) ; если идеал главный, то ;
(3) если — область целостности, то , а также ;
(4) и, если в кольце все идеалы главные, то . - Неприводимые и простые эл.-ты: и .
- Примеры: и .
- Теорема о неприводимых и простых элементах. Пусть — коммутативное кольцо; тогда
(1) если — область целостности, то ;
(2) если в кольце все идеалы главные, то ;
(3) для любых следующие два условия эквивалентны: и — область целостности;
(4) если — область целостности, в которой все идеалы главные, то для любых следующие четыре условия эквивалентны:
, , — область целостности, — поле.
1.4.2 Евклидовы кольца и факториальные кольца
- Евклидова норма: , где и .
- Евклидово кольцо — область целостности с евклидовой нормой. Примеры: (); (); , , ().
- Теорема о евклидовых кольцах. Пусть — евклидово кольцо с евклидовой нормой ; тогда
(1) для любых и выполнено ;
(2) если , то для любых выполнено ;
(3) в кольце все идеалы главные и, значит, .