Алгебра phys 1 весна 2016 — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 18: | Строка 18: | ||
<li>1.2.3 Системы линейных уравнений</ul> | <li>1.2.3 Системы линейных уравнений</ul> | ||
<h5>1.3 Конструкции над векторными пространствами</h5> | <h5>1.3 Конструкции над векторными пространствами</h5> | ||
− | <ul><li>1.3.1 | + | <ul><li>1.3.1 Факторпространства и прямая сумма векторных пространств |
<li>1.3.2 Двойственное пространство</ul> | <li>1.3.2 Двойственное пространство</ul> | ||
<h5>1.4 Полилинейные отображения, формы объема, определитель</h5> | <h5>1.4 Полилинейные отображения, формы объема, определитель</h5> | ||
Строка 32: | Строка 32: | ||
<ul><li>Многочлен от оператора: <math>f(a)=\sum_{k=0}^{\deg f}f_ka^k</math>. Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм колец и векторных пространств. | <ul><li>Многочлен от оператора: <math>f(a)=\sum_{k=0}^{\deg f}f_ka^k</math>. Эвалюация <math>\biggl(\!\begin{align}\mathrm{eval}_a\colon K[x]&\to\mathrm{End}(V)\\f&\mapsto f(a)\end{align}\!\biggr)</math> — гомоморфизм колец и векторных пространств. | ||
<li>Кольцо, порожденное оператором: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a</math> — коммутативное подкольцо и подпространство в <math>\mathrm{End}(V)</math>. | <li>Кольцо, порожденное оператором: <math>K[a]=\{f(a)\mid f\in K[x]\}=\mathrm{Im}\,\mathrm{eval}_a</math> — коммутативное подкольцо и подпространство в <math>\mathrm{End}(V)</math>. | ||
− | <li>Минимальный многочлен оператора: <math>\mu_a(a)=0</math>, <math>\mu_a</math> приведен, <math>\deg\mu_a=\min\{\deg f\mid f\in K[x]\setminus\{0\}\ | + | <li>Минимальный многочлен оператора: <math>\mu_a(a)=0</math>, <math>\mu_a</math> приведен, <math>\deg\mu_a=\min\{\deg f\mid f\in K[x]\!\setminus\!\{0\}\,\land\,f(a)=0\}</math>; <math>(\mu_a)=\mathrm{Ker}\,\mathrm{eval}_a\trianglelefteq K[x]</math>. |
<li>Утверждение: <i>пусть <math>a\in\mathrm{End}(V)</math> и <math>f\in K[x]</math>; тогда <math>a\bigl(\mathrm{Ker}\,f(a)\bigr)\le\mathrm{Ker}\,f(a)</math> и, если <math>g\in K[x]</math> и <math>f</math> делит <math>g</math>, то <math>\,\mathrm{Ker}\,f(a)\le\mathrm{Ker}\,g(a)</math></i>. | <li>Утверждение: <i>пусть <math>a\in\mathrm{End}(V)</math> и <math>f\in K[x]</math>; тогда <math>a\bigl(\mathrm{Ker}\,f(a)\bigr)\le\mathrm{Ker}\,f(a)</math> и, если <math>g\in K[x]</math> и <math>f</math> делит <math>g</math>, то <math>\,\mathrm{Ker}\,f(a)\le\mathrm{Ker}\,g(a)</math></i>. | ||
<li><u>Теорема о разложении в прямую сумму ядер.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>a\in\mathrm{End}(V)</math>,<br><math>f,g\in K[x]</math> и <math>\gcd(f,g)=1</math>; тогда <math>\,\mathrm{Ker}\,(fg)(a)=\mathrm{Ker}\,f(a)\oplus\mathrm{Ker}\,g(a)</math>.</i> | <li><u>Теорема о разложении в прямую сумму ядер.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>a\in\mathrm{End}(V)</math>,<br><math>f,g\in K[x]</math> и <math>\gcd(f,g)=1</math>; тогда <math>\,\mathrm{Ker}\,(fg)(a)=\mathrm{Ker}\,f(a)\oplus\mathrm{Ker}\,g(a)</math>.</i> | ||
Строка 87: | Строка 87: | ||
<li>Структурные константы алгебры: <math>\stackrel em\!\,^i_{j_1,j_2}\!=((e_{j_1}e_{j_2})^e)^i</math>. Утверждение: <i>массив <math>\bigl(\stackrel em\!\,^i_{j_1,j_2}\bigr)_{1\le i,j_1,j_2\le\dim A}</math> определяет умножение в <math>K</math>-алгебре <math>A</math></i>. | <li>Структурные константы алгебры: <math>\stackrel em\!\,^i_{j_1,j_2}\!=((e_{j_1}e_{j_2})^e)^i</math>. Утверждение: <i>массив <math>\bigl(\stackrel em\!\,^i_{j_1,j_2}\bigr)_{1\le i,j_1,j_2\le\dim A}</math> определяет умножение в <math>K</math>-алгебре <math>A</math></i>. | ||
<li><u>Теорема Кэли для алгебр.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство над<br>полем <math>K</math>, получающееся из <math>K</math>-алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображение <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор на векторном<br>пространстве <math>{}_K\!A</math> (то есть элемент <math>K</math>-алгебры <math>\,\mathrm{End}({}_K\!A)</math>);<br>(2) обозначая через <math>\mathrm{lm}</math> отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i> | <li><u>Теорема Кэли для алгебр.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство над<br>полем <math>K</math>, получающееся из <math>K</math>-алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_a</math> отображение <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_a</math> — линейный оператор на векторном<br>пространстве <math>{}_K\!A</math> (то есть элемент <math>K</math>-алгебры <math>\,\mathrm{End}({}_K\!A)</math>);<br>(2) обозначая через <math>\mathrm{lm}</math> отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_a\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i> | ||
− | <li>Алгебра с делением: <math>\forall\,a\in A\setminus\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math>. Утверждение: <i>конечномерная алгебра без делителей нуля — алгебра с делением</i>.</ul> | + | <li>Алгебра с делением: <math>\forall\,a\in A\!\setminus\!\{0\}\;\bigl(\mathrm{lm}_a,\mathrm{rm}_a\!\in\mathrm{Bij}(A)\bigr)</math>. Утверждение: <i>конечномерная алгебра без делителей нуля — алгебра с делением</i>.</ul> |
<h5>1.7.2 Полилинейные формы и многочлены от свободных переменных</h5> | <h5>1.7.2 Полилинейные формы и многочлены от свободных переменных</h5> | ||
Строка 148: | Строка 148: | ||
<h2>2 Билинейная и полилинейная алгебра</h2> | <h2>2 Билинейная и полилинейная алгебра</h2> | ||
+ | |||
+ | <h3>2.1 Векторные пространства с ¯-билинейной формой</h3> | ||
+ | <h5>2.1.1 ¯-Билинейные формы</h5> | ||
+ | <ul><li>Пространство билинейных форм <math>\mathrm{Bi}(V)</math>. Примеры билинейных форм: <math>(v,w)\mapsto v^\mathtt T\!\cdot s\cdot w</math> (<math>v^\mathtt T\!\cdot s\cdot w=\sum_{j_1=1}^n\sum_{j_2=1}^ns_{j_1,j_2}v^{j_1}w^{j_2}</math>), <math>(f,g)\mapsto\!\int_X\!sfg</math>. | ||
+ | <li>Необходимость изучения ¯-билинейных форм. Поля с инволюцией. Пространство <math>\overline V</math>. Пространство ¯-билинейных форм: <math>\overline\mathrm{Bi}(V)=\mathrm{Bi}(V,\overline V,K)</math>. | ||
+ | <li>Матрица Грама формы <math>\sigma</math>: <math>(\sigma_{e,e})_{j_1,j_2}\!=\sigma(e_{j_1}\!,e_{j_2})</math>. ¯-Билинейная форма в координатах: <math>\sigma(v,w)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{w^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{w^{j_2}}</math>. | ||
+ | <li>Изоморфизм <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\mathrm{Mat}(n,K)\\\sigma&\mapsto\sigma_{e,e}\end{align}\!\biggr)</math>. Преобразования при замене базиса: <math>\sigma_{\tilde e,\tilde e}=(\mathrm c_\tilde e^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{\mathrm c_\tilde e^e}</math> и <math>\sigma_{\tilde{j_1},\tilde{j_2}}\!=\sum_{l_1=1}^n\sum_{l_2=1}^n(e_\tilde{j_1})^{l_1}\overline{(e_\tilde{j_2})^{l_2}}\,\sigma_{l_1,l_2}</math>. | ||
+ | <li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{SBi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm S\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=\overline s\}</math>. | ||
+ | <li>Пр.-ва (над полем <math>\{c\in K\mid c=\overline c\}</math>) <math>\overline\mathrm{ABi}(V)=\{\sigma\in\overline\mathrm{Bi}(V)\mid\forall\,v,w\in V\;\bigl(\sigma(w,v)=-\overline{\sigma(v,w)}\bigr)\}</math> и <math>\overline\mathrm A\mathrm{Mat}(n,K)=\{s\in\mathrm{Mat}(n,K)\mid s^\mathtt T\!=-\overline s\}</math>. | ||
+ | <li>Мн.-во гомоморфизмов между пространствами с формой: <math>\mathrm{Hom}((V,\sigma),(Y,\varphi))=\{a\in\mathrm{Hom}(V,Y)\mid\forall\,v,w\in V\;\bigl(\sigma(v,w)=\varphi(a(v),a(w))\bigr)\}</math>. | ||
+ | <li>Группа автоморфизмов пространства с формой: <math>\mathrm{Aut}(V,\sigma)=\mathrm{Hom}((V,\sigma),(V,\sigma))\cap\mathrm{GL}(V)</math> и <math>\mathrm{Aut}(n,K,s)=\{a\in\mathrm{GL}(n,K)\mid a^\mathtt T\!\cdot s\cdot\overline a=s\}</math>.</ul> | ||
+ | |||
+ | <h5>2.1.2 ¯-Квадратичные формы</h5> | ||
+ | <ul><li>Пространство ¯-квадратичных форм: <math>\overline\mathrm{Quad}(V)=\{\kappa\in\mathrm{Map}(V,K)\mid\exists\,\sigma\in\overline\mathrm{Bi}(V)\;\forall\,v\in V\;\bigl(\kappa(v)=\sigma(v,v)\bigr)\}</math>. Утверждение: <math>\kappa(c\,v)=c\overline c\,\kappa(v)</math>. | ||
+ | <li>¯-Квадратичная форма в координатах: <math>\kappa(v)=(v^e)^\mathtt T\!\cdot\sigma_{e,e}\!\cdot\overline{v^e}=\sum_{j_1=1}^n\sum_{j_2=1}^n\sigma_{j_1,j_2}v^{j_1}\overline{v^{j_2}}</math> — однородный ¯-многочлен степени <math>2</math> от <math>v^1,\ldots,v^n</math>. | ||
+ | <li>Гиперповерхность второго порядка в пространстве <math>V</math>: мн.-во вида <math>\{v\in V\mid\kappa(v)+2\,\lambda(v)+c=0\}</math>, где <math>\kappa\in\mathrm{Quad}(V)\!\setminus\!\{0\}</math>, <math>\lambda\in V^*</math>, <math>c\in K</math>. | ||
+ | <li><u>Теорема о поляризации квадратичных форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math> и <math>V</math> — векторное пространство над полем <math>K</math>; тогда<br>(1) для любых <math>\kappa\in\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to K\\(v,w)&\mapsto\bigl(\kappa(v+w)-\kappa(v-w)\bigr)/4\end{align}\!\biggr)</math>, имеем следующий факт:<br><math>\mathrm{pol}_\kappa</math> — симметричная билинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\mathrm{SBi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\mathrm{Quad}(V)&\to\mathrm{SBi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\mathrm{SBi}(V)&\to\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i> | ||
+ | <li><u>Теорема о поляризации ¯-квадратичных форм над полем <b>C</b>.</u> <i>Пусть <math>V</math> — векторное пространство над полем <math>\,\mathbb C</math>; тогда<br>(1) для любых <math>\kappa\in\overline\mathrm{Quad}(V)</math>, обозначая через <math>\,\mathrm{pol}_\kappa</math> отображение <math>\biggl(\!\begin{align}V\times V&\to\mathbb C\\(v,w)&\mapsto\bigl(\kappa(v+w)+\mathrm i\,\kappa(v+\mathrm i\,w)-\kappa(v-w)-\mathrm i\,\kappa(v-\mathrm i\,w)\bigr)/4\end{align}\!\biggr)</math>,<br>имеем следующий факт: <math>\mathrm{pol}_\kappa</math> — полуторалинейная форма в пространстве <math>V</math> (то есть <math>\mathrm{pol}_\kappa\!\in\overline\mathrm{Bi}(V)</math>);<br>(2) отображения <math>\biggl(\!\begin{align}\overline\mathrm{Quad}(V)&\to\overline\mathrm{Bi}(V)\\\kappa&\mapsto\mathrm{pol}_\kappa\end{align}\!\biggr)</math> и <math>\biggl(\!\begin{align}\overline\mathrm{Bi}(V)&\to\overline\mathrm{Quad}(V)\\\sigma&\mapsto\bigl(v\mapsto\sigma(v,v)\bigr)\end{align}\!\biggr)</math> суть взаимно обратные изоморфизмы векторных пространств.</i> | ||
+ | <li>Утверждение: <i>пусть <math>\mathrm{char}\,K\ne2</math>, <math>\sigma\in\mathrm{SBi}(V)</math> или <math>K=\mathbb C</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>; тогда <math>\mathrm{Aut}(V,\sigma)=\{a\in\mathrm{GL}(V)\mid\forall\,v\in V\;\bigl(\sigma(v,v)=\sigma(a(v),a(v))\bigr)\}</math></i>.</ul> | ||
+ | |||
+ | <h5>2.1.3 Невырожденные ¯-билинейные формы</h5> | ||
+ | <ul><li>Опускание индексов: <math>\biggl(\!\begin{align}\downarrow_\sigma\colon V&\to\overline V^*\\v&\mapsto\bigl(w\mapsto\sigma(v,w)\bigr)\end{align}\!\biggr)</math>. Опускание индексов в координатах: <math>({\downarrow}_\sigma v)_e=(v^e)^\mathtt T\!\cdot\sigma_{e,e}</math> и <math>({\downarrow}_\sigma v)_j=\sum_{i=1}^n\sigma_{i,j}\,v^i</math>. | ||
+ | <li>Случай <math>\dim V<\infty</math>: <math>\bigl(</math><math>\sigma</math> невырождена<math>\bigr)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\downarrow_\sigma</math> — биекция<math>\bigr)</math><math>\,\Leftrightarrow\;</math><math>\mathrm{Ker}\,{\downarrow}_\sigma\!=\{0\}</math>. Ранг формы: <math>\mathrm{rk}(\sigma)=\dim\mathrm{Im}\,{\downarrow}_\sigma</math>. Утверждение: <math>\mathrm{rk}(\sigma)=\mathrm{rk}(\sigma_{e,e})</math>. | ||
+ | <li>Тонкости случая <math>\dim V=\infty</math>. Пример: пусть <math>V=\mathrm C^0\!([-1;1],\mathbb R)</math> и <math>\sigma\colon(f,g)\mapsto\!\int_{-1}^1\!fg</math>; тогда <math>\mathrm{Ker}\,{\downarrow}_\sigma\!=\{0\}</math>, но <math>\mathrm{Im}\,{\downarrow}_\sigma\!<V^*\!\cap\mathrm C^0\!(V,\mathbb R)</math>. | ||
+ | <li>Подъем индексов (<math>\sigma</math> невырождена): <math>\uparrow^\sigma={\downarrow}_\sigma^{-1}</math>. Подъем индексов в координатах (<math>\sigma^{e,e}=(\sigma_{e,e})^{-1}</math>): <math>({\uparrow}^\sigma\lambda)^e=(\sigma^{e,e})^\mathtt T\!\cdot(\lambda_e)^\mathtt T</math> и <math>({\uparrow}^\sigma\lambda)^i=\sum_{j=1}^n\sigma^{j,i}\,\lambda_j</math>. | ||
+ | <li><u>Лемма о базисах и невырожденных формах.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{Bi}(V)</math>, <math>m\in\mathbb N_0</math>, <math>e\in V^m</math>; обозначим<br>через <math>U</math> пространство <math>\langle e_1,\ldots,e_m\rangle</math>; тогда <math>\det\sigma_{e,e}\!\ne0</math>, если и только если <math>e\in\mathrm{OB}(U)</math> и форма <math>\sigma|_{U\times U}</math> невырождена.</i> | ||
+ | <li>Ортогональность (<math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math>): <math>v\perp w\,\Leftrightarrow\,\sigma(v,w)=0\,\Leftrightarrow\,\sigma(w,v)=0</math>. Ортогональное дополнение: <math>U^\perp\!=\{v\in V\mid U\perp v\}\le V</math>. | ||
+ | <li><u>Теорема об ортогональном дополнении.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — вект. пр. над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\cup\overline\mathrm{ABi}(V)</math> и <math>U,W\le V</math>; тогда<br>(1) <math>U\le U^{\perp\perp}</math>, <math>U\le W\,\Rightarrow\,W^\perp\!\le U^\perp</math>, <math>(U+W)^\perp\!=U^\perp\!\cap W^\perp</math> и <math>\,U^\perp\!+W^\perp\!\le(U\cap W)^\perp</math>;<br>(2) <math>\mathrm{Ker}({\downarrow}_{\sigma|_{U\times U}})=U\cap U^\perp</math> и, если <math>\dim U<\infty</math>, то <math>\bigl(</math><math>\sigma|_{U\times U}</math> невырождена<math>\bigr)</math><math>\,\Leftrightarrow\;</math><math>U\cap U^\perp\!=\{0\}</math>;<br>(3) если форма <math>\sigma|_{U\times U}</math> невырождена, то <math>V=U\oplus U^\perp</math> (и, значит, определен ортогональный проектор <math>\biggl(\!\begin{align}\mathrm{proj}_U\colon V=U\oplus U^\perp\!&\to V\\v=u+u^\perp&\mapsto u\end{align}\!\biggr)</math>);<br>(4) если форма <math>\sigma|_{U\times U}</math> невырождена и <math>U^\perp\!\cap U^{\perp\perp}\!=\{0\}</math>, то <math>U=U^{\perp\perp}</math>.</i></ul> | ||
+ | |||
+ | <h5>2.1.4 Диагонализация ¯-симметричных ¯-билинейных форм</h5> | ||
+ | <ul><li>Ортогональный базис: <math>e\in\mathrm{OOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица<math>\bigr)</math><math>\;\Leftrightarrow\,</math><math>\forall\,j_1,j_2\in\{1,\ldots,\dim V\}\;\bigl(j_1\ne j_2\,\Rightarrow\,\sigma(e_{j_1}\!,e_{j_2})=0\bigr)</math>. | ||
+ | <li>Ортонормированный базис (если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>): <math>e\in\mathrm{OnOB}(V,\sigma)</math><math>\,\Leftrightarrow\,</math><math>\bigl(</math><math>\sigma_{e,e}</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали<math>\bigr)</math>. | ||
+ | <li><u>Лемма о неизотропном векторе.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над <math>K</math>, <math>\sigma\in\overline\mathrm{SBi}(V)\!\setminus\!\{0\}</math>; тогда<br>существует такой вектор <math>v\in V</math>, что <math>\sigma(v,v)\ne0</math> (то есть существует неизотропный вектор).</i> | ||
+ | <li><u>Теорема Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — векторное пространство над <math>K</math>, <math>\dim V<\infty</math>, <math>\sigma\in\overline\mathrm{SBi}(V)</math>; тогда<br>(1) в пространстве <math>V</math> существует ортогональный базис (то есть <math>\mathrm{OOB}(V,\sigma)\ne\varnothing</math>);<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то в пространстве <math>V</math> существует ортонормированный базис (то есть <math>\mathrm{OnOB}(V,\sigma)\ne\varnothing</math>).</i> | ||
+ | <li><u>Матричная формулировка теоремы Лагранжа.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>\mathrm{char}\,K\ne2</math>, <math>n\in\mathbb N_0</math> и <math>s\in\overline\mathrm S\mathrm{Mat}(n,K)</math>; тогда<br>(1) существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица;<br>(2) если <math>K=\mathbb R</math> или <math>K=\mathbb C</math>, то существует такая матрица <math>g\in\mathrm{GL}(n,K)</math>, что <math>g^\mathtt T\!\cdot s\cdot\overline g</math> — диагональная матрица с <math>1</math>, <math>-1</math>, <math>0</math> на диагонали.</i> | ||
+ | <li>Утверждение: <i>пусть <math>U\le V</math>, <math>\dim U<\infty</math>, <math>e\in\mathrm{OOB}(U,\sigma|_{U\times U})</math>, форма <math>\sigma|_{U\times U}</math> невырождена и <math>v\in V</math>; тогда <math>\mathrm{proj}_U(v)=\!\sum_{j=1}^{\dim U}\!\frac{\sigma(v,e_j)}{\sigma(e_j,e_j)}e_j</math></i>. | ||
+ | <li><u>Процесс ортогонализации Грама–Шмидта.</u> <i>Пусть <math>K</math> — поле с инволюцией, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>\sigma\in\overline\mathrm{SBi}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; для любых <math>i\in\{0,\ldots,n\}</math> обозначим через <math>V_i</math> пространство <math>\langle e_1,\ldots,e_i\rangle</math> и<br>обозначим через <math>m_i</math> <math>i</math>-й угловой минор матрицы <math>\sigma_{e,e}</math>. Пусть для любых <math>i\in\{1,\ldots,n\}</math> форма <math>\sigma|_{V_i\times V_i}</math> невырождена (это эквивалентно<br>тому, что <math>m_i\ne0</math>); для любых <math>i\in\{1,\ldots,n\}</math> обозначим через <math>\hat e_i</math> вектор <math>e_i-\mathrm{proj}_{V_{i-1}}(e_i)</math>. Тогда для любых <math>i\in\{1,\ldots,n\}</math> выполнено<br>(1) <math>(\hat e_1,\dots,\hat e_i)\in\mathrm{OOB}(V_i,\sigma|_{V_i\times V_i})</math> и <math>\,\sigma(\hat e_i,\hat e_i)=\frac{m_i}{m_{i-1}}</math>;<br>(2) <math>\hat e_i=e_i-\sum_{j=1}^{i-1}\frac{\sigma(e_i,\hat e_j)}{\sigma(\hat e_j,\hat e_j)}\hat e_j</math> (это индуктивная формула для нахождения векторов <math>\hat e_1,\ldots,\hat e_n</math>).</i></ul> | ||
+ | |||
<table cellpadding="6" cellspacing="0"> | <table cellpadding="6" cellspacing="0"> | ||
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)<br>или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-<br>менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.<br>Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-<br>ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих<br>пространств, хотя принципиальная возможность применения его в более общих случаях остается.</td></tr><tr align="right"><td>[https://ru.wikipedia.org/wiki/Тензор<i>Статья «Тензор» в русскоязычной Википедии</i>]</td></tr></table></td></tr> | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)<br>или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-<br>менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.<br>Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-<br>ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих<br>пространств, хотя принципиальная возможность применения его в более общих случаях остается.</td></tr><tr align="right"><td>[https://ru.wikipedia.org/wiki/Тензор<i>Статья «Тензор» в русскоязычной Википедии</i>]</td></tr></table></td></tr> | ||
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>(Сказанное выше о тензорах справедливо также для векторов, ковекторов, полилинейных отображений (это частные случаи тензоров)<br>и в целом для очень многих абстрактных (вернее, инвариантных) объектов, изучаемых в алгебре. — Е.Е. Горячко.)</td></tr></table></td></tr></table> | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>(Сказанное выше о тензорах справедливо также для векторов, ковекторов, полилинейных отображений (это частные случаи тензоров)<br>и в целом для очень многих абстрактных (вернее, инвариантных) объектов, изучаемых в алгебре. — Е.Е. Горячко.)</td></tr></table></td></tr></table> |
Версия 19:00, 21 августа 2016
1 Линейная алгебра
| ||||||||||
|
Материал первой половины второго семестра курса алгебры
Содержание первой половины второго семестра курса алгебры
1.1 Матрицы, базисы, координаты
- 1.1.1 Пространства матриц, столбцов, строк
- 1.1.2 Столбцы координат векторов и матрицы гомоморфизмов
- 1.1.3 Преобразования координат при замене базиса
- 1.1.4 Элементарные матрицы и приведение к ступенчатому виду
1.2 Линейные операторы (часть 1)
- 1.2.1 Ядро и образ линейного оператора
- 1.2.2 Ранг линейного оператора
- 1.2.3 Системы линейных уравнений
1.3 Конструкции над векторными пространствами
- 1.3.1 Факторпространства и прямая сумма векторных пространств
- 1.3.2 Двойственное пространство
1.4 Полилинейные отображения, формы объема, определитель
- 1.4.1 Отступление о симметрических группах
- 1.4.2 Полилинейные отображения и формы объема
- 1.4.3 Определитель линейного оператора
- 1.4.4 Миноры матрицы и присоединенная матрица
Материал второй половины второго семестра курса алгебры
1.5 Линейные операторы (часть 2)
1.5.1 Многочлены от операторов
- Многочлен от оператора: . Эвалюация — гомоморфизм колец и векторных пространств.
- Кольцо, порожденное оператором: — коммутативное подкольцо и подпространство в .
- Минимальный многочлен оператора: , приведен, ; .
- Утверждение: пусть и ; тогда и, если и делит , то .
- Теорема о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
и ; тогда . - Следствие из теоремы о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
, и , где , и попарно взаимно просты; тогда . - Проектор (идемпотент): . Нильпотентный оператор: .
1.5.2 Спектр оператора и характеристический многочлен оператора
- Спектр оператора: ; если , то .
- Характеристический многочлен матрицы: . Характеристический многочлен оператора: . Корректность определения.
- Утверждение: . Утверждение: (и, значит, ).
- Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
- Две кратности: — кратность как корня многочлена (алгебраическая кратность) и — кратность как корня многочлена .
- Лемма о минимальном и характеристическом многочленах. Пусть — поле, — вект. пр. над , , ; тогда
(1) многочлен делит многочлен (и, значит, );
(2) ;
(3) если — нильпотентный оператор, то .
1.5.3 Собственные и корневые подпространства оператора
- Обобщенные собственные подпространства: . Корневые подпространства: .
- Цепь -инвариантных подпространств: ; вывод: .
- Относительные геометрические кратности: и . Утверждение: .
- Теорема о диагонализуемых операторах. Пусть — поле, — векторное пространство над полем , и ;
тогда следующие условия эквивалентны:
(1) существует такой упорядоченный базис , что — диагональная матрица;
(2) (то есть раскладывается без кратностей в произведение многочленов степени в кольце );
(3) (это разложение пространства в прямую сумму собственных подпространств оператора );
(3') . - Лемма об обобщенных собственных подпространствах. Пусть — поле, — вект. пр. над , , , ; тогда
(1) для любых выполнено ;
(2) и . - Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем ,
, и многочлен раскладывается в произведение многочленов степени в кольце (если , то
это условие выполнено для любого оператора в силу алгебраической замкнутости поля ); тогда
(1) (это разложение пространства в прямую сумму корневых подпространств оператора );
(2) для любых , обозначая через оператор , имеем следующий факт: для любых
выполнено , а также — нильпотентный оператор и .
1.6 Линейные операторы (часть 3)
1.6.1 Относительные базисы
- Независимое подмножество в относительно : . Порождающее подмножество в относительно : .
- Базис в относительно : одновременно независимое и порождающее подмножество в относительно . Три леммы-упражнения.
Лемма 1 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда следующие условия эквивалентны:
(1) — базис в относительно ;
(1') — независимое подмножество в и ;
(2) — максимальное независимое подмножество в относительно ;
(3) — минимальное порождающее подмножество в относительно .
Лемма 2 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда
(1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
(2) из любого конечного порождающего подмножества в относительно можно выделить базис в относительно .
Лемма 3 об относительных базисах. Пусть — поле, — вект. пр. над , , — базис в относительно , — базис в
относительно ; тогда — базис в относительно . - Теорема об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем , и ;
обозначим через , , пространства , , соответственно; пусть — независимое подмножество в
относительно ; тогда — биекция и — независимое подмножество в относительно . - Следствие из теоремы об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем ,
, и ; тогда .
1.6.2 Жорданова нормальная форма оператора
- Жордановы клетки: и . Прямая сумма матриц: .
- Диаграммы Юнга. Жорданов блок: , где числа суть длины строк диаграммы Юнга .
- Диаграмма Юнга : высоты столбцов диаграммы суть относительные геометрические кратности .
- Теорема о жордановой нормальной форме нильпотентного оператора. Пусть — поле, — векторное пространство над , ,
, — нильпотентный оператор; тогда существует такой упорядоченный базис , что . - Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , ,
и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для
любого оператора в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что
(то есть матрица раскладывается в прямую сумму жордановых блоков).
1.6.3 Примеры использования жордановой нормальной формы в анализе и физике
- Утверждение: пусть и ; тогда . Вычисление многочленов и рядов от жордановых клеток.
- Экспонента от оператора: . Пример вычисления экспоненты: . Теорема о свойствах экспоненты.
Теорема о свойствах экспоненты. Пусть — векторное пространство над полем и ; тогда
(1) для любых таких , что , выполнено ;
(2) для любых выполнено , а также . - Однородная система линейных дифференциальных уравнений: (, ). Решение: ().
- Сведе́ние уравнения к системе уравнений . Фундаментальная система решений.
- Стационарное ур.-е Шрёдингера для частицы в одномерной потенциальной яме с бесконечными стенками: и .
- Выводы из ур.-я Шрёдингера для частицы в потенциальной яме: — плотность вероятности, — энергия.
1.7 Алгебры
1.7.1 Определения и конструкции, связанные с алгебрами
- -Алгебра — векторное пространство над с билинейным умножением — кольцо (в широком смысле слова) с умножением на скаляры из .
- Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство.
- Примеры алгебр: -алгебры , , , , , ; -алгебры , с векторным умножением, .
- Структурные константы алгебры: . Утверждение: массив определяет умножение в -алгебре .
- Теорема Кэли для алгебр. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство над
полем , получающееся из -алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор на векторном
пространстве (то есть элемент -алгебры );
(2) обозначая через отображение , имеем следующий факт: — инъективный гомоморфизм алгебр с . - Алгебра с делением: . Утверждение: конечномерная алгебра без делителей нуля — алгебра с делением.
1.7.2 Полилинейные формы и многочлены от свободных переменных
- Тензорное произведение полилинейных форм: . Свойства операции .
- Утверждение: пусть и ; тогда множество — базис пространства .
- Алгебра полилинейных форм (ковариантных тензоров): . Утверждение: — ассоциативная -алгебра с .
- Моном (слово) от свободных переменных степени : (). Моноид слов .
- Пространство однородных многочленов степени : . Алгебра многочленов: .
- Теорема об алгебре полилинейных форм. Пусть — поле, — вект. пр. над , , ; обозначим через число ;
тогда отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с .
1.7.3 Тело кватернионов
- -Алгебра кватернионов: , где и , , .
- Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
- Сопряжение: . Модуль: . Чистые кватернионы: .
- Теорема о свойствах кватернионов.
(1) Для любых и выполнено .
(2) Для любых выполнено и, если , то (и, значит, — тело).
(3) Для любых выполнено (и, значит, отображение — антиавтоморфизм алгебры ).
(4) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Трехмерная сфера: . Утверждение: пусть ; тогда и .
- Теорема о представлении кватернионов комплексными матрицами. Отображение — инъективный
гомоморфизм алгебр с , и его образ есть (и, значит, ).
1.7.4 Алгебры Ли (основные определения и примеры)
- Условия на умножение в алгебре Ли: билинейность, антисимметричность (), тождество Якоби ().
- Коммутатор в ассоциативной алгебре : . Алгебра : пространство с операцией . Утверждение: — алгебра Ли.
- Примеры алгебр Ли: , , с векторным умножением ( в алгебре Ли ).
- Теорема Кэли для алгебр Ли. Пусть — поле и — -алгебра Ли; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор на векторном
пространстве (то есть элемент алгебры Ли );
(2) обозначая через отображение , имеем следующий факт: — гомоморфизм алгебр Ли. - Алгебра дифференцирований алгебры : — подалгебра алгебры Ли .
- Теорема об алгебре Ли векторных полей. Пусть и — открытое подмножество в ; обозначим через и
алгебру и векторное пространство соответственно; тогда
(1) для любых , обозначая через отображение (здесь ), имеем следующий
факт: — дифференцирование алгебры (то есть элемент алгебры Ли );
(2) обозначая через отображение , имеем следующий факт: — инъективный линейный оператор,
а также — подалгебра алгебры Ли ;
(3) определим на векторном пространстве бинарную операцию так, что для любых выполнено
(из пункта (2) следует, что это условие корректно определяет операцию ); тогда для любых
выполнено (здесь ), а также — алгебра Ли относительно операции .
Вопросы к экзамену по второй половине второго семестра курса алгебры
- Строки 1, 2, 3, 4 пункта 1.5.1 «Многочлены от операторов».
- Строки 5, 6, 7 пункта 1.5.1 «Многочлены от операторов».
- Строки 1, 2, 3 пункта 1.5.2 «Спектр оператора и характеристический многочлен оператора».
- Строки 1, 2, 4 пункта 1.5.2 «Спектр оператора и характеристический многочлен оператора».
- Строки 2, 5, 6 пункта 1.5.2 «Спектр оператора и характеристический многочлен оператора».
- Строки 1, 2, 3 пункта 1.5.3 «Собственные и корневые подпространства оператора».
- Строки 1, 4 пункта 1.5.3 «Собственные и корневые подпространства оператора».
- Строки 1, 5 пункта 1.5.3 «Собственные и корневые подпространства оператора».
- Строки 1, 6 пункта 1.5.3 «Собственные и корневые подпространства оператора».
- Строки 1, 2 пункта 1.6.1 «Относительные базисы».
- Строки 3, 4 пункта 1.6.1 «Относительные базисы».
- Строки 1, 2, 3, 4 пункта 1.6.2 «Жорданова нормальная форма оператора».
- Строки 1, 2, 3, 5 пункта 1.6.2 «Жорданова нормальная форма оператора».
- Строки 1, 2 пункта 1.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
- Строки 3, 4 пункта 1.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
- Строки 5, 6 пункта 1.6.3 «Примеры использования жордановой нормальной формы в анализе и физике».
- Строки 1, 2, 3, 4 пункта 1.7.1 «Определения и конструкции, связанные с алгебрами».
- Строки 2, 5, 6 пункта 1.7.1 «Определения и конструкции, связанные с алгебрами».
- Строки 1, 2, 3 пункта 1.7.2 «Полилинейные формы и многочлены от свободных переменных».
- Строки 4, 5, 6 пункта 1.7.2 «Полилинейные формы и многочлены от свободных переменных».
- Строки 1, 2, 3, 4 пункта 1.7.3 «Тело кватернионов».
- Строки 5, 6 пункта 1.7.3 «Тело кватернионов».
- Строки 1, 2, 3 пункта 1.7.4 «Алгебры Ли (основные определения и примеры)».
- Строки 1, 4 пункта 1.7.4 «Алгебры Ли (основные определения и примеры)».
- Строки 5, 6 пункта 1.7.4 «Алгебры Ли (основные определения и примеры)».
Правила проведения экзамена
- На экзамене можно использовать только написанные выше план материала курса и список вопросов (желательно иметь распечатки).
- «Строки» в списке вопросов нужно понимать либо как «настоящие строки» в плане материала курса (например, строки 1, 2, 3, 4 пункта 1.5.1),
либо в естественном обобщенном смысле (например, строки 5, 6, 7 пункта 1.5.1 суть «настоящие строки» 5, 6, 7, 8, 9). - При ответе на вопрос должен быть подробно рассказан материал строк, указанных в вопросе (например, если строка содержит определения,
то к ним должны быть приведены примеры; если строка содержит утверждения или теоремы, то они должны быть полностью доказаны). - На экзамене нужно ответить на два вопроса: один с номером от 1 до 16 (то есть по пунктам о линейных операторах), один с номером от 17 до 25
(то есть по пунктам об алгебрах). Кроме того, будут заданы дополнительные вопросы и упражнения на знание определений и формулировок по
всем пунктам второй половины второго семестра, а также студентам, претендующим на оценку «отлично», будет дана задача. - При подготовке к экзамену рекомендуется обратить внимание на глубокое понимание материала, а не на заучивание (возможность использовать
на экзамене план материала курса предоставляется для того, чтобы минимизировать заучивание).
2 Билинейная и полилинейная алгебра
2.1 Векторные пространства с ¯-билинейной формой
2.1.1 ¯-Билинейные формы
- Пространство билинейных форм . Примеры билинейных форм: (), .
- Необходимость изучения ¯-билинейных форм. Поля с инволюцией. Пространство . Пространство ¯-билинейных форм: .
- Матрица Грама формы : . ¯-Билинейная форма в координатах: .
- Изоморфизм . Преобразования при замене базиса: и .
- Пр.-ва (над полем ) и .
- Пр.-ва (над полем ) и .
- Мн.-во гомоморфизмов между пространствами с формой: .
- Группа автоморфизмов пространства с формой: и .
2.1.2 ¯-Квадратичные формы
- Пространство ¯-квадратичных форм: . Утверждение: .
- ¯-Квадратичная форма в координатах: — однородный ¯-многочлен степени от .
- Гиперповерхность второго порядка в пространстве : мн.-во вида , где , , .
- Теорема о поляризации квадратичных форм. Пусть — поле, и — векторное пространство над полем ; тогда
(1) для любых , обозначая через отображение , имеем следующий факт:
— симметричная билинейная форма в пространстве (то есть );
(2) отображения и суть взаимно обратные изоморфизмы векторных пространств. - Теорема о поляризации ¯-квадратичных форм над полем C. Пусть — векторное пространство над полем ; тогда
(1) для любых , обозначая через отображение ,
имеем следующий факт: — полуторалинейная форма в пространстве (то есть );
(2) отображения и суть взаимно обратные изоморфизмы векторных пространств. - Утверждение: пусть , или , ; тогда .
2.1.3 Невырожденные ¯-билинейные формы
- Опускание индексов: . Опускание индексов в координатах: и .
- Случай : невырождена — биекция. Ранг формы: . Утверждение: .
- Тонкости случая . Пример: пусть и ; тогда , но .
- Подъем индексов ( невырождена): . Подъем индексов в координатах (): и .
- Лемма о базисах и невырожденных формах. Пусть — поле с инволюцией, — вект. пр. над , , , ; обозначим
через пространство ; тогда , если и только если и форма невырождена. - Ортогональность (): . Ортогональное дополнение: .
- Теорема об ортогональном дополнении. Пусть — поле с инволюцией, — вект. пр. над , и ; тогда
(1) , , и ;
(2) и, если , то невырождена;
(3) если форма невырождена, то (и, значит, определен ортогональный проектор );
(4) если форма невырождена и , то .
2.1.4 Диагонализация ¯-симметричных ¯-билинейных форм
- Ортогональный базис: — диагональная матрица.
- Ортонормированный базис (если или ): — диагональная матрица с , , на диагонали.
- Лемма о неизотропном векторе. Пусть — поле с инволюцией, , — векторное пространство над , ; тогда
существует такой вектор , что (то есть существует неизотропный вектор). - Теорема Лагранжа. Пусть — поле с инволюцией, , — векторное пространство над , , ; тогда
(1) в пространстве существует ортогональный базис (то есть );
(2) если или , то в пространстве существует ортонормированный базис (то есть ). - Матричная формулировка теоремы Лагранжа. Пусть — поле с инволюцией, , и ; тогда
(1) существует такая матрица , что — диагональная матрица;
(2) если или , то существует такая матрица , что — диагональная матрица с , , на диагонали. - Утверждение: пусть , , , форма невырождена и ; тогда .
- Процесс ортогонализации Грама–Шмидта. Пусть — поле с инволюцией, — векторное пространство над полем , ,
и ; обозначим через число ; для любых обозначим через пространство и
обозначим через -й угловой минор матрицы . Пусть для любых форма невырождена (это эквивалентно
тому, что ); для любых обозначим через вектор . Тогда для любых выполнено
(1) и ;
(2) (это индуктивная формула для нахождения векторов ).
| ||||||||
|