Алгебра phys 1 весна 2016 — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
<h2>1 Линейная алгебра</h2> | <h2>1 Линейная алгебра</h2> | ||
<table cellpadding="6" cellspacing="0"> | <table cellpadding="6" cellspacing="0"> | ||
− | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-<br>научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-<br>щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического<br>анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-<br>нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство<br>приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.<br>Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности<br>малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы<br>является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной<br>алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной<br>двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-<br>лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.</td></tr><tr align="right"><td><i>А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия</i></td></tr></table></td></tr | + | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-<br>научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-<br>щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического<br>анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-<br>нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство<br>приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.<br>Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности<br>малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы<br>является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной<br>алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной<br>двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-<br>лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.</td></tr><tr align="right"><td><i>А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия</i></td></tr></table></td></tr> |
− | + | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Одно из отличий математиков от физиков — стремление математиков назвать вещи своими именами. Примеров тому — масса,<br>особенно в двадцатом веке, когда произошло «размежевание» математики и физики.<br>Классический пример — линейная алгебра. То, что системы линейных уравнений имеют «какую-то структуру», понимали все, и<br>до Гаусса, и после. Соответственно, манипуляции с этими уравнениями, позволяющие решить систему или, скажем, привести<br>квадратичную форму к сумме квадратов, знали и физики, и инженеры, и математики. Но математики полезли на стенку и нашли<br>правильный язык: векторные пространства, линейные операторы, двойственные пространства и т.д. Это могло бы показаться<br>игрой со словами, но оказалось, что технически гораздо более сложные вещи (дифференциальные и интегральные уравнения)<br>также описываются на языке линейной алгебры, только бесконечномерной.<br>То же верно и в отношении других физических конструктов. Физики обнаружили экспериментальным путем (выписывая лист за<br>листом громоздкие формулы), что некоторые величины, задаваемые индексированными массивами данных, по-разному преоб-<br>разуются при замене координат, и назвали соответствующие величины тензорами. Это — чистая «феноменология», позволяю-<br>щая быстро проконтролировать вычисления на предмет ошибок (ну, или механизировать эти вычисления). Математики долго<br>пыхтели и сформулировали понятия симметрических и антисимметрических произведений векторных пространств и их двойст-<br>венных пространств и разобрались, откуда они возникают. В общем, исторический опыт убедительно подтверждает: если чело-<br>век узнал, что всю жизнь говорил прозой, то в дальнейшем ему легче жить с этим знанием. ;-)</td></tr><tr align="right"><td><i>По мотивам комментария в Живом Журнале ([http://avva.livejournal.com/2932837.html avva.livejournal.com/2932837.html])</i></td></tr></table></td></tr></table><br> | |
− | + | ||
− | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>Одно из отличий математиков от физиков — стремление математиков назвать вещи своими именами. Примеров тому — масса,<br>особенно в двадцатом веке, когда произошло «размежевание» математики и физики.<br>Классический пример — линейная алгебра. То, что системы линейных уравнений имеют «какую-то структуру», понимали все, и<br>до Гаусса, и после. Соответственно, манипуляции с этими уравнениями, позволяющие решить систему или, скажем, привести<br>квадратичную форму к сумме квадратов, знали и физики, и инженеры, и математики. Но математики полезли на стенку и нашли<br>правильный язык: векторные пространства, линейные операторы, двойственные пространства и т.д. Это могло бы показаться<br>игрой со словами, но оказалось, что технически гораздо более сложные вещи (дифференциальные и интегральные уравнения)<br> | + | |
[[Алгебра_phys_1_февраль–март_2016|<font size="3"><b><u>Материал первой половины второго семестра курса алгебры</u></b></font>]] | [[Алгебра_phys_1_февраль–март_2016|<font size="3"><b><u>Материал первой половины второго семестра курса алгебры</u></b></font>]] | ||
Строка 118: | Строка 116: | ||
<h2>3 Полилинейная алгебра</h2> | <h2>3 Полилинейная алгебра</h2> | ||
<table cellpadding="6" cellspacing="0"> | <table cellpadding="6" cellspacing="0"> | ||
− | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)<br>или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-<br>менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.<br>Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-<br>ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих<br>пространств, хотя принципиальная возможность применения его в более общих случаях остается.</td></tr> | + | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)<br>или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-<br>менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.<br>Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-<br>ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих<br>пространств, хотя принципиальная возможность применения его в более общих случаях остается.</td></tr><tr align="right"><td>[https://ru.wikipedia.org/wiki/Тензор<i>Статья «Тензор» в русскоязычной Википедии</i>]</td></tr></table></td></tr> |
− | <tr align="right"><td>[https://ru.wikipedia.org/wiki/Тензор<i>Статья «Тензор» в русскоязычной Википедии</i>]</td></tr></table></td></tr> | + | |
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>(Сказанное выше о тензорах справедливо также для векторов, ковекторов, полилинейных отображений (это частные случаи тензоров)<br>и в целом для очень многих абстрактных (вернее, инвариантных) объектов, изучаемых в алгебре. — Е.Е. Горячко.)</td></tr></table></td></tr></table> | <tr><td></td><td></td><td></td><td></td><td></td><td></td><td><table cellpadding="0" cellspacing="3"><tr><td>(Сказанное выше о тензорах справедливо также для векторов, ковекторов, полилинейных отображений (это частные случаи тензоров)<br>и в целом для очень многих абстрактных (вернее, инвариантных) объектов, изучаемых в алгебре. — Е.Е. Горячко.)</td></tr></table></td></tr></table> |
Версия 16:30, 24 мая 2016
1 Линейная алгебра
| ||||||||||
|
Материал первой половины второго семестра курса алгебры
Содержание первой половины второго семестра курса алгебры
1.1 Матрицы, базисы, координаты
- 1.1.1 Пространства матриц, столбцов, строк
- 1.1.2 Столбцы координат векторов и матрицы гомоморфизмов
- 1.1.3 Преобразования координат при замене базиса
- 1.1.4 Элементарные матрицы и приведение к ступенчатому виду
1.2 Линейные операторы (часть 1)
- 1.2.1 Ядро и образ линейного оператора
- 1.2.2 Ранг линейного оператора
- 1.2.3 Системы линейных уравнений
1.3 Конструкции над векторными пространствами
- 1.3.1 Прямая сумма векторных пространств и факторпространства
- 1.3.2 Двойственное пространство
1.4 Полилинейные отображения, формы объема, определитель
- 1.4.1 Отступление о симметрических группах
- 1.4.2 Полилинейные отображения и формы объема
- 1.4.3 Определитель линейного оператора
- 1.4.4 Миноры матрицы и присоединенная матрица
Материал второй половины второго семестра курса алгебры
1.5 Линейные операторы (часть 2)
1.5.1 Многочлены от операторов
- Многочлен от оператора: . Эвалюация — гомоморфизм колец и векторных пространств.
- Кольцо, порожденное оператором: — коммутативное подкольцо и подпространство в .
- Минимальный многочлен оператора: , приведен, ; .
- Утверждение: пусть и ; тогда и, если и делит , то .
- Теорема о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
и ; тогда . - Следствие из теоремы о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
, и , где , и попарно взаимно просты; тогда . - Проектор (идемпотент): . Нильпотентный оператор: .
1.5.2 Спектр оператора и характеристический многочлен оператора
- Спектр оператора: ; если , то .
- Характеристический многочлен матрицы: . Характеристический многочлен оператора: . Корректность определения.
- Утверждение: . Утверждение: (и, значит, ).
- Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
- Две кратности: — кратность как корня многочлена (алгебраическая кратность) и — кратность как корня многочлена .
- Лемма о минимальном и характеристическом многочленах. Пусть — поле, — вект. пр. над , , ; тогда
(1) многочлен делит многочлен (и, значит, );
(2) ;
(3) если — нильпотентный оператор, то .
1.5.3 Собственные и корневые подпространства оператора
- Обобщенные собственные подпространства: . Корневые подпространства: .
- Цепь -инвариантных подпространств: ; вывод: .
- Относительные геометрические кратности: и . Утверждение: .
- Теорема о диагонализуемых операторах. Пусть — поле, — векторное пространство над полем , и ;
тогда следующие условия эквивалентны:
(1) существует такой упорядоченный базис , что — диагональная матрица;
(2) (то есть раскладывается без кратностей в произведение многочленов степени в кольце );
(3) (это разложение пространства в прямую сумму собственных подпространств оператора );
(3') . - Лемма об обобщенных собственных подпространствах. Пусть — поле, — вект. пр. над , , , ; тогда
(1) для любых выполнено ;
(2) и . - Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем ,
, и многочлен раскладывается в произведение многочленов степени в кольце (если , то
это условие выполнено для любого оператора в силу алгебраической замкнутости поля ); тогда
(1) (это разложение пространства в прямую сумму корневых подпространств оператора );
(2) для любых , обозначая через оператор , имеем следующий факт: для любых
выполнено , а также — нильпотентный оператор и .
1.6 Линейные операторы (часть 3)
1.6.1 Относительные базисы
- Независимое подмножество в относительно : . Порождающее подмножество в относительно : .
- Базис в относительно : одновременно независимое и порождающее подмножество в относительно . Три леммы-упражнения.
Лемма 1 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда следующие условия эквивалентны:
(1) — базис в относительно ;
(1') — независимое подмножество в и ;
(2) — максимальное независимое подмножество в относительно ;
(3) — минимальное порождающее подмножество в относительно .
Лемма 2 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда
(1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
(2) из любого конечного порождающего подмножества в относительно можно выделить базис в относительно .
Лемма 3 об относительных базисах. Пусть — поле, — вект. пр. над , , — базис в относительно , — базис в
относительно ; тогда — базис в относительно . - Теорема об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем , и ;
обозначим через , , пространства , , соответственно; пусть — независимое подмножество в
относительно ; тогда — биекция и — независимое подмножество в относительно . - Следствие из теоремы об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем ,
, и ; тогда .
1.6.2 Жорданова нормальная форма оператора
- Жордановы клетки: и . Прямая сумма матриц: .
- Диаграммы Юнга. Жорданов блок: , где числа суть длины строк диаграммы Юнга .
- Диаграмма Юнга : высоты столбцов диаграммы суть относительные геометрические кратности .
- Теорема о жордановой нормальной форме нильпотентного оператора. Пусть — поле, — векторное пространство над , ,
, — нильпотентный оператор; тогда существует такой упорядоченный базис , что . - Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , ,
и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для
любого оператора в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что
(то есть матрица раскладывается в прямую сумму жордановых блоков).
1.6.3 Примеры использования жордановой нормальной формы в анализе и физике
- Утверждение: пусть и ; тогда . Вычисление многочленов и рядов от жордановых клеток.
- Экспонента от оператора: . Утверждение: пусть ; тогда . Утверждение: .
- Однородная система линейных дифференциальных уравнений: (, ). Решение: ().
- Сведе́ние уравнения к системе уравнений . Фундаментальная система решений.
- Стационарное ур.-е Шрёдингера для частицы в одномерной потенциальной яме с бесконечными стенками: и .
- Выводы из ур.-я Шрёдингера для частицы в потенциальной яме: — плотность вероятности, — энергия.
1.7 Алгебры
1.7.1 Определения и конструкции, связанные с алгебрами
- -Алгебра — векторное пространство над с билинейным умножением — кольцо (в широком смысле слова) с умножением на скаляры из .
- Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство.
- Примеры алгебр: -алгебры , , , , , ; -алгебры , с векторным умножением, .
- Структурные константы алгебры: . Утверждение: массив определяет умножение в -алгебре .
- Теорема Кэли для алгебр. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство над
полем , получающееся из -алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор на векторном
пространстве (то есть элемент -алгебры );
(2) обозначая через отображение , имеем следующий факт: — инъективный гомоморфизм алгебр с . - Алгебра с делением: . Утверждение: конечномерная алгебра без делителей нуля — алгебра с делением.
1.7.2 Полилинейные формы и многочлены от свободных переменных
- Тензорное произведение полилинейных форм: . Свойства операции .
- Утверждение: пусть и ; тогда множество — базис пространства .
- Алгебра полилинейных форм (ковариантных тензоров): . Утверждение: — ассоциативная -алгебра с .
- Моном (слово) от свободных переменных степени : (). Моноид слов .
- Пространство однородных многочленов степени : . Алгебра многочленов: .
- Теорема об алгебре полилинейных форм. Пусть — поле, — вект. пр. над , , ; обозначим через число ;
тогда отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с .
1.7.3 Тело кватернионов
- -Алгебра кватернионов: , где и , , .
- Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
- Сопряжение: . Модуль: . Чистые кватернионы: .
- Теорема о свойствах кватернионов.
(1) Для любых и выполнено .
(2) Для любых выполнено и, если , то (и, значит, — тело).
(3) Для любых выполнено (и, значит, отображение — антиавтоморфизм алгебры ).
(4) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Трехмерная сфера: . Утверждение: пусть ; тогда и .
- Теорема о представлении кватернионов комплексными матрицами. Отображение — инъективный
гомоморфизм алгебр с , и его образ есть (и, значит, ).
1.7.4 Алгебры Ли (основные определения и примеры)
- Условия на умножение в алгебре Ли: билинейность, антисимметричность (), тождество Якоби ().
- Коммутатор в ассоциативной алгебре : . Алгебра : пространство с операцией . Утверждение: — алгебра Ли.
- Примеры алгебр Ли: , , с векторным умножением ( в алгебре Ли ).
- Теорема Кэли для алгебр Ли. Пусть — поле и — -алгебра Ли; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор на векторном
пространстве (то есть элемент алгебры Ли );
(2) обозначая через отображение , имеем следующий факт: — гомоморфизм алгебр Ли. - Алгебра дифференцирований алгебры : — подалгебра алгебры Ли .
- Теорема об алгебре Ли векторных полей. Пусть и — открытое подмножество в ; обозначим через и
векторные пространства и соответственно; тогда
(1) для любых , обозначая через отображение (здесь ), имеем следующий
факт: — дифференцирование алгебры (то есть элемент алгебры Ли );
(2) обозначая через отображение , имеем следующий факт: — инъективный линейный оператор,
а также — подалгебра алгебры Ли ;
(3) определим на векторном пространстве бинарную операцию так, что для любых выполнено
(из пункта (2) следует, что это условие корректно определяет операцию ); тогда для любых
выполнено (здесь ), а также — алгебра Ли относительно операции .
2 Билинейная алгебра
3 Полилинейная алгебра
| ||||||||
|