Алгебра phys 1 весна 2016 — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 84: | Строка 84: | ||
<li>Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство. | <li>Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство. | ||
<li>Примеры алгебр: <math>K</math>-алгебры <math>K[x]</math>, <math>K[[x]]</math>, <math>K(x)</math>, <math>\mathrm{End}(V)</math> и <math>\mathrm{Mat}(n,K)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb R^3</math> с векторным умножением, <math>\mathrm C^0(\mathbb R^n)</math> и <math>\mathrm C^\infty(\mathbb R^n)</math>. | <li>Примеры алгебр: <math>K</math>-алгебры <math>K[x]</math>, <math>K[[x]]</math>, <math>K(x)</math>, <math>\mathrm{End}(V)</math> и <math>\mathrm{Mat}(n,K)</math>; <math>\mathbb R</math>-алгебры <math>\mathbb C</math>, <math>\mathbb R^3</math> с векторным умножением, <math>\mathrm C^0(\mathbb R^n)</math> и <math>\mathrm C^\infty(\mathbb R^n)</math>. | ||
− | <li>Структурные константы алгебры: <math>\stackrel em\!\,^i_{j_1,j_2}\!=((e_{j_1} | + | <li>Структурные константы алгебры: <math>\stackrel em\!\,^i_{j_1,j_2}\!=((e_{j_1}e_{j_2})^e)^i</math>. Утверждение: <i>массив <math>\bigl(\stackrel em\!\,^i_{j_1,j_2}\bigr)_{1\le i,j_1,j_2\le\dim A}</math> определяет умножение в <math>K</math>-алгебре <math>A</math></i>. |
− | <li><u>Теорема Кэли для алгебр.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство над полем <math>K</math>,<br>получающееся из <math>K</math>-алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_{A,a}</math> отображение <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\ | + | <li><u>Теорема Кэли для алгебр.</u> <i>Пусть <math>K</math> — поле и <math>A</math> — ассоциативная <math>K</math>-алгебра с <math>1</math>; обозначим через <math>{}_K\!A</math> векторное пространство над полем <math>K</math>,<br>получающееся из <math>K</math>-алгебры <math>A</math> при «забывании» умножения в этой алгебре; тогда<br>(1) для любых <math>a\in A</math>, обозначая через <math>\mathrm{lm}_{A,a}</math> отображение <math>\biggl(\!\begin{align}A&\to A\\b&\mapsto a\,b\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_{A,a}</math> — эндоморфизм векторного<br>пространства <math>{}_K\!A</math> (то есть элемент <math>K</math>-алгебры <math>\,\mathrm{End}({}_K\!A)</math>);<br>(2) обозначая через <math>\mathrm{lm}_A</math> отображение <math>\biggl(\!\begin{align}A&\to\mathrm{End}({}_K\!A)\\a&\mapsto\mathrm{lm}_{A,a}\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{lm}_A</math> — инъективный гомоморфизм алгебр с <math>1</math>.</i> |
<li>Алгебра с делением: <math>\forall\,a\in A\setminus\{0\}\;\bigl(\mathrm{lm}_{A,a},\mathrm{rm}_{A,a}\!\in\mathrm{Bij}(A)\bigr)</math>. Утверждение: <i>конечномерная алгебра без делителей нуля — алгебра с делением</i>.</ul> | <li>Алгебра с делением: <math>\forall\,a\in A\setminus\{0\}\;\bigl(\mathrm{lm}_{A,a},\mathrm{rm}_{A,a}\!\in\mathrm{Bij}(A)\bigr)</math>. Утверждение: <i>конечномерная алгебра без делителей нуля — алгебра с делением</i>.</ul> | ||
<h5>1.7.2 Полилинейные формы и многочлены от свободных переменных</h5> | <h5>1.7.2 Полилинейные формы и многочлены от свободных переменных</h5> | ||
− | <ul><li>Тензорное произведение полилинейных форм: <math>(\omega\otimes\omega')(v_1,\ldots,v_k,v_1',\ldots,v_{k'}')=\omega(v_1,\ldots,v_k)\ | + | <ul><li>Тензорное произведение полилинейных форм: <math>(\omega\otimes\omega')(v_1,\ldots,v_k,v_1',\ldots,v_{k'}')=\omega(v_1,\ldots,v_k)\,\omega'(v_1',\ldots,v_{k'}')</math>. Свойства операции <math>\otimes</math>. |
<li>Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math> и <math>n=\dim V</math>; тогда множество <math>\{e_{j_1}^*\!\otimes\ldots\otimes e_{j_k}^*\!\mid j_1,\ldots,j_k\in\{1,\ldots,n\}\}</math> — базис пространства <math>\,\mathrm{Multi}^kV</math></i>. | <li>Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math> и <math>n=\dim V</math>; тогда множество <math>\{e_{j_1}^*\!\otimes\ldots\otimes e_{j_k}^*\!\mid j_1,\ldots,j_k\in\{1,\ldots,n\}\}</math> — базис пространства <math>\,\mathrm{Multi}^kV</math></i>. | ||
<li>Алгебра полилинейных форм (ковариантных тензоров): <math>\mathrm{Multi}(V)=\bigoplus_{k=0}^\infty\mathrm{Multi}^kV</math>. Утверждение: <i><math>\mathrm{Multi}(V)</math> — ассоциативная <math>K</math>-алгебра с <math>1</math></i>. | <li>Алгебра полилинейных форм (ковариантных тензоров): <math>\mathrm{Multi}(V)=\bigoplus_{k=0}^\infty\mathrm{Multi}^kV</math>. Утверждение: <i><math>\mathrm{Multi}(V)</math> — ассоциативная <math>K</math>-алгебра с <math>1</math></i>. | ||
Строка 98: | Строка 98: | ||
<h5>1.7.3 Тело кватернионов</h5> | <h5>1.7.3 Тело кватернионов</h5> | ||
<ul><li><math>\mathbb R</math>-Алгебра кватернионов: <math>\mathbb H=\{\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k\mid\alpha,\beta,\gamma,\delta\in\mathbb R\}</math>, где <math>\mathrm i^2=\mathrm j^2=\mathrm k^2=-1</math> и <math>\mathrm i\,\mathrm j=-\mathrm j\,\mathrm i=\mathrm k</math>, <math>\mathrm j\,\mathrm k=-\mathrm k\,\mathrm j=\mathrm i</math>, <math>\mathrm k\,\mathrm i=-\mathrm i\,\mathrm k=\mathrm j</math>. | <ul><li><math>\mathbb R</math>-Алгебра кватернионов: <math>\mathbb H=\{\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k\mid\alpha,\beta,\gamma,\delta\in\mathbb R\}</math>, где <math>\mathrm i^2=\mathrm j^2=\mathrm k^2=-1</math> и <math>\mathrm i\,\mathrm j=-\mathrm j\,\mathrm i=\mathrm k</math>, <math>\mathrm j\,\mathrm k=-\mathrm k\,\mathrm j=\mathrm i</math>, <math>\mathrm k\,\mathrm i=-\mathrm i\,\mathrm k=\mathrm j</math>. | ||
− | <li>Скалярная и векторная части: <math>\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k=\alpha | + | <li>Скалярная (вещественная) и векторная (мнимая) части кватерниона: <math>\mathrm{re}(\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)=\alpha</math> и <math>\mathrm{im}(\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k)=\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k</math>. |
− | <li>Сопряжение: <math>\overline | + | <li>Сопряжение: <math>\overline a=\mathrm{re}(a)-\mathrm{im}(a)</math>. Модуль: <math>|a|=\sqrt{\mathrm{re}(a)^2+\|\mathrm{im}(a)\|^2}</math>. Чистые кватернионы: <math>\mathbb H_\mathrm{vect}=\{a\in\mathbb H\mid\mathrm{re}(a)=0\}=\{a\in\mathbb H\mid\overline a=-a\}</math>. |
+ | <li><u>Теорема о свойствах кватернионов.</u><br><i>(1) Для любых <math>\alpha,\beta\in\mathbb R</math> и <math>v,w\in\mathbb H_\mathrm{vect}</math> выполнено <math>(\alpha+v)(\beta+w)=(\alpha\beta-(v,w))+(\alpha\,w+\beta\,v+v\times w)</math>.<br>(2) Для любых <math>a\in\mathbb H</math> выполнено <math>a\,\overline a=\overline a\,a=|a|^2</math> и, если <math>a\ne0</math>, то <math>a^{-1}\!=\!\frac\overline a{|a|^2}</math> (и, значит, <math>\mathbb H</math> — тело).<br>(3) Для любых <math>a,b\in\mathbb H</math> выполнено <math>\overline{a\,b}=\overline b\,\overline a</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb H&\to\mathbb H\\a&\mapsto\overline a\end{align}\!\biggr)</math> — антиавтоморфизм алгебры <math>\,\mathbb H</math>).<br>(4) Для любых <math>a,b\in\mathbb H</math> выполнено <math>|a\,b|=|a|\,|b|</math> (и, значит, отображение <math>\biggl(\!\begin{align}\mathbb H^\times\!&\to\mathbb R_{>0}\\a&\mapsto|a|\end{align}\!\biggr)</math> — гомоморфизм групп).</i> | ||
+ | <li>Трехмерная сфера: <math>\mathrm S^3\!=\{g\in\mathbb H\mid|g|=1\}\triangleleft\mathbb H^\times</math>. Утверждение: <i>пусть <math>g,g'\in\mathrm S^3</math>; тогда <math>\forall\,a\in\mathbb H\;\bigl(|g\,a\,g'|=|a|\bigr)</math> и <math>\forall\,a\in\mathbb H_\mathrm{vect}\,\bigl(g\,a\,g^{-1}\in\mathbb H_\mathrm{vect}\bigr)</math></i>. | ||
+ | <li><u>Теорема о представлении кватернионов комплексными матрицами.</u> <i>Отображение <math>\biggl(\!\begin{align}\mathbb H&\to\mathrm{Mat}(2,\mathbb C)\\\alpha+\beta\,\mathrm i+\gamma\,\mathrm j+\delta\,\mathrm k&\mapsto\!\Bigl(\begin{smallmatrix}\alpha+\beta\,\mathrm i&\gamma+\delta\,\mathrm i\\-\gamma+\delta\,\mathrm i&\alpha-\beta\,\mathrm i\end{smallmatrix}\Bigr)\end{align}\!\biggr)</math> — инъективный<br>гомоморфизм алгебр с <math>1</math>, и его образ есть <math>\bigl\{\Bigl(\begin{smallmatrix}c&d\\-\overline d&\overline c\end{smallmatrix}\Bigr)\mid c,d\in\mathbb C\bigr\}</math> (и, значит, <math>\mathbb H\cong\bigl\{\Bigl(\begin{smallmatrix}c&d\\-\overline d&\overline c\end{smallmatrix}\Bigr)\mid c,d\in\mathbb C\bigr\}</math>).</i></ul> | ||
<h5>1.7.4 Алгебры Ли (основные определения и примеры)</h5> | <h5>1.7.4 Алгебры Ли (основные определения и примеры)</h5> | ||
+ | <ul><li>Условия на умножение в алгебре Ли: билинейность, антисимметричность (<math>[a,a]=0</math>) и тождество Якоби (<math>[[a,b],c]+[[b,c],a]+[[c,a],b]=0</math>). | ||
+ | <li>Коммутатор в ассоциативной алгебре <math>A</math>: <math>[a,b]=a\,b-b\,a</math>. Алгебра <math>A^-</math>: пространство <math>{}_K\!A</math> с операцией <math>[\,,\,]</math>. Утверждение: <i><math>A^-</math> — алгебра Ли</i>. | ||
+ | <li>Примеры алгебр Ли: <math>\mathfrak{gl}(V)=\mathrm{End}(V)^-</math>, <math>\mathfrak{sl}(V)=\{a\in\mathfrak{gl}(V)\mid\mathrm{tr}\,a=0\}</math>, <math>\mathbb R^3</math> с векторным умножением (<math>v\times w=\frac12[v,w]</math> в алгебре Ли <math>\mathbb H^-</math>). | ||
+ | <li><u>Теорема Кэли для алгебр Ли.</u> <i>Пусть <math>K</math> — поле и <math>\mathfrak g</math> — <math>K</math>-алгебра Ли; тогда<br>(1) для любых <math>a\in\mathfrak g</math>, обозначая через <math>\mathrm{ad}_{\mathfrak g,a}</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak g\\b&\mapsto[a,b]\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_{\mathfrak g,a}</math> — эндоморфизм векторного<br>пространства <math>{}_K\mathfrak g</math> (то есть элемент алгебры Ли <math>\mathfrak{gl}({}_K\mathfrak g)</math>);<br>(2) обозначая через <math>\mathrm{ad}_\mathfrak g</math> отображение <math>\biggl(\!\begin{align}\mathfrak g&\to\mathfrak{gl}({}_K\mathfrak g)\\a&\mapsto\mathrm{ad}_{\mathfrak g,a}\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{ad}_\mathfrak g</math> — гомоморфизм алгебр Ли.</i> | ||
+ | <li>Алгебра дифференцирований алгебры <math>A</math>: <math>\mathrm{Der}(A)=\{d\in\mathfrak{gl}({}_K\!A)\mid\forall\,a,b\in A\;\bigl(d(a\,b)=d(a)\,b+a\,d(b)\bigr)\}</math> — подалгебра алгебры Ли <math>\mathfrak{gl}({}_K\!A)</math>. | ||
+ | <li><u>Теорема об алгебре Ли векторных полей.</u> <i>Пусть <math>n\in\mathbb N_0</math>; обозначим через <math>\,\mathrm{Vect}(\mathbb R^n)</math> векторное пространство <math>\,\mathrm C^\infty(\mathbb R^n,\mathbb R^n)</math>; тогда<br>(1) для любых <math>v\in\mathrm{Vect}(\mathbb R^n)</math>, обозначая через <math>\mathrm{der}_v</math> отображение <math>\biggl(\!\begin{align}\mathrm{Func}(\mathbb R^n)&\to\mathrm{Func}(\mathbb R^n)\\f&\mapsto\mathrm df\cdot v\end{align}\!\biggr)</math> (здесь <math>\mathrm df\in\mathrm C^\infty(\mathbb R^n,{}^n\mathbb R)</math>), имеем<br>следующий факт: <math>\mathrm{der}_v</math> — дифференцирование алгебры <math>\,\mathrm{Func}(\mathbb R^n)</math> (то есть элемент алгебры Ли <math>\mathrm{Der}(\mathrm{Func}(\mathbb R^n))</math>);<br>(2) обозначая через <math>\mathrm{der}</math> отображение <math>\biggl(\!\begin{align}\mathrm{Vect}(\mathbb R^n)&\to\mathrm{Der}(\mathrm{Func}(\mathbb R^n))\\v&\mapsto\mathrm{der}_v\end{align}\!\biggr)</math>, имеем следующий факт: <math>\mathrm{der}</math> — инъективный гомоморфизм<br>векторных пространств, а также <math>\,\mathrm{Im}\,\mathrm{der}</math> — подалгебра алгебры Ли <math>\mathrm{Der}(\mathrm{Func}(\mathbb R^n))</math>;<br>(3) определим на векторном пространстве <math>\,\mathrm{Vect}(\mathbb R^n)</math> бинарную операцию <math>[\,,\,]</math> так, что для любых <math>v,w\in\mathrm{Vect}(\mathbb R^n)</math> выполнено<br><math>\mathrm{der}_{[v,w]}=[\mathrm{der}_v,\mathrm{der}_w]</math> (из пункта (2) следует, что это условие корректно определяет операцию <math>[\,,\,]</math>); тогда для любых <math>v,w\in\mathrm{Vect}(\mathbb R^n)</math><br>выполнено <math>[v,w]=\mathrm dw\cdot v-\mathrm dv\cdot w</math> (здесь <math>\mathrm dv,\mathrm dw\in\mathrm C^\infty(\mathbb R^n,\mathrm{Mat}(n,\mathbb R))</math>), а также <math>\,\mathrm{Vect}(\mathbb R^n)</math> — алгебра Ли относительно операции <math>[\,,\,]</math>.</i></ul> | ||
<h2>2 Билинейная алгебра</h2> | <h2>2 Билинейная алгебра</h2> |
Версия 23:10, 17 мая 2016
1 Линейная алгебра
|
Материал первой половины второго семестра курса алгебры
Содержание первой половины второго семестра курса алгебры
1.1 Матрицы, базисы, координаты
- 1.1.1 Пространства матриц, столбцов, строк
- 1.1.2 Столбцы координат векторов и матрицы гомоморфизмов
- 1.1.3 Преобразования координат при замене базиса
- 1.1.4 Элементарные матрицы и приведение к ступенчатому виду
1.2 Линейные операторы (часть 1)
- 1.2.1 Ядро и образ линейного оператора
- 1.2.2 Ранг линейного оператора
- 1.2.3 Системы линейных уравнений
1.3 Конструкции над векторными пространствами
- 1.3.1 Прямая сумма векторных пространств и факторпространства
- 1.3.2 Двойственное пространство
1.4 Полилинейные отображения, формы объема, определитель
- 1.4.1 Отступление о симметрических группах
- 1.4.2 Полилинейные отображения и формы объема
- 1.4.3 Определитель линейного оператора
- 1.4.4 Миноры матрицы и присоединенная матрица
Материал второй половины второго семестра курса алгебры
1.5 Линейные операторы (часть 2)
1.5.1 Многочлены от операторов
- Многочлен от оператора: . Эвалюация — гомоморфизм колец и векторных пространств.
- Кольцо, порожденное оператором: — коммутативное подкольцо и подпространство в .
- Минимальный многочлен оператора: , приведен, ; .
- Утверждение: пусть и ; тогда и, если и делит , то .
- Теорема о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
и ; тогда . - Следствие из теоремы о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
, и , где , и попарно взаимно просты; тогда . - Проектор (идемпотент): . Нильпотентный оператор: .
1.5.2 Спектр оператора и характеристический многочлен оператора
- Спектр оператора: ; если , то .
- Характеристический многочлен матрицы: . Характеристический многочлен оператора: . Корректность определения.
- Утверждение: . Утверждение: (и, значит, ).
- Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
- Две кратности: — кратность как корня многочлена (алгебраическая кратность) и — кратность как корня многочлена .
- Лемма о минимальном и характеристическом многочленах. Пусть — поле, — вект. пр. над , , ; тогда
(1) многочлен делит многочлен (и, значит, );
(2) ;
(3) если — нильпотентный оператор, то .
1.5.3 Собственные и корневые подпространства оператора
- Обобщенные собственные подпространства: . Корневые подпространства: .
- Цепь -инвариантных подпространств: ; вывод: .
- Относительные геометрические кратности: и . Утверждение: .
- Теорема о диагонализуемых операторах. Пусть — поле, — векторное пространство над полем , и ;
тогда следующие условия эквивалентны:
(1) существует такой упорядоченный базис , что — диагональная матрица;
(2) (то есть раскладывается без кратностей в произведение многочленов степени в кольце );
(3) (это разложение пространства в прямую сумму собственных подпространств оператора );
(3') . - Лемма об обобщенных собственных подпространствах. Пусть — поле, — вект. пр. над , , , ; тогда
(1) для любых выполнено ;
(2) и . - Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем ,
, и многочлен раскладывается в произведение многочленов степени в кольце (если , то
это условие выполнено для любого оператора в силу алгебраической замкнутости поля ); тогда
(1) (это разложение пространства в прямую сумму корневых подпространств оператора );
(2) для любых , обозначая через оператор , имеем следующие факты: для любых
выполнено , а также — нильпотентный оператор и .
1.6 Линейные операторы (часть 3)
1.6.1 Относительные базисы
- Независимое подмножество в относительно : . Порождающее подмножество в относительно : .
- Базис в относительно : одновременно независимое и порождающее подмножество в относительно . Три леммы-упражнения.
Лемма 1 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда следующие условия эквивалентны:
(1) — базис в относительно ;
(1') — независимое подмножество в и ;
(2) — максимальное независимое подмножество в относительно ;
(3) — минимальное порождающее подмножество в относительно .
Лемма 2 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда
(1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
(2) из любого конечного порождающего подмножества в относительно можно выделить базис в относительно .
Лемма 3 об относительных базисах. Пусть — поле, — вект. пр. над , , — базис в относительно , — базис в
относительно ; тогда — базис в относительно . - Теорема об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем , и ;
обозначим через , , пространства , , соответственно; пусть — независимое подмножество в
относительно ; тогда — биекция и — независимое подмножество в относительно . - Следствие из теоремы об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем ,
, и ; тогда .
1.6.2 Жорданова нормальная форма оператора
- Жордановы клетки: и . Прямая сумма матриц: .
- Диаграммы Юнга. Жорданов блок: , где числа суть длины строк диаграммы Юнга .
- Диаграмма Юнга : высоты столбцов диаграммы суть относительные геометрические кратности .
- Теорема о жордановой нормальной форме нильпотентного оператора. Пусть — поле, — векторное пространство над , ,
, — нильпотентный оператор; тогда существует такой упорядоченный базис , что . - Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , ,
и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для
любого оператора в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что
(то есть матрица раскладывается в прямую сумму жордановых блоков).
1.6.3 Примеры использования жордановой нормальной формы в анализе и физике
- Утверждение: пусть и ; тогда . Вычисление многочленов и рядов от жордановых клеток.
- Экспонента от оператора: . Утверждение: пусть ; тогда . Утверждение: .
- Однородная система линейных дифференциальных уравнений: (, ). Решение: ().
- Сведе́ние уравнения к системе уравнений . Фундаментальная система решений.
- Стационарное ур.-е Шрёдингера для частицы в одномерной потенциальной яме с бесконечными стенками: и .
- Выводы из ур.-я Шрёдингера для частицы в потенциальной яме: — плотность вероятности, — энергия.
1.7 Алгебры
1.7.1 Определения и конструкции, связанные с алгебрами
- -Алгебра — векторное пространство над с билинейным умножением — кольцо (в широком смысле слова) с умножением на скаляры из .
- Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство.
- Примеры алгебр: -алгебры , , , и ; -алгебры , с векторным умножением, и .
- Структурные константы алгебры: . Утверждение: массив определяет умножение в -алгебре .
- Теорема Кэли для алгебр. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство над полем ,
получающееся из -алгебры при «забывании» умножения в этой алгебре; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — эндоморфизм векторного
пространства (то есть элемент -алгебры );
(2) обозначая через отображение , имеем следующий факт: — инъективный гомоморфизм алгебр с . - Алгебра с делением: . Утверждение: конечномерная алгебра без делителей нуля — алгебра с делением.
1.7.2 Полилинейные формы и многочлены от свободных переменных
- Тензорное произведение полилинейных форм: . Свойства операции .
- Утверждение: пусть и ; тогда множество — базис пространства .
- Алгебра полилинейных форм (ковариантных тензоров): . Утверждение: — ассоциативная -алгебра с .
- Моном (слово) от свободных переменных степени : (). Моноид слов .
- Пространство однородных многочленов степени : . Алгебра многочленов: .
- Теорема об алгебре полилинейных форм. Пусть — поле, — вект. пр. над , , ; обозначим через число ;
тогда отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с .
1.7.3 Тело кватернионов
- -Алгебра кватернионов: , где и , , .
- Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
- Сопряжение: . Модуль: . Чистые кватернионы: .
- Теорема о свойствах кватернионов.
(1) Для любых и выполнено .
(2) Для любых выполнено и, если , то (и, значит, — тело).
(3) Для любых выполнено (и, значит, отображение — антиавтоморфизм алгебры ).
(4) Для любых выполнено (и, значит, отображение — гомоморфизм групп). - Трехмерная сфера: . Утверждение: пусть ; тогда и .
- Теорема о представлении кватернионов комплексными матрицами. Отображение — инъективный
гомоморфизм алгебр с , и его образ есть (и, значит, ).
1.7.4 Алгебры Ли (основные определения и примеры)
- Условия на умножение в алгебре Ли: билинейность, антисимметричность () и тождество Якоби ().
- Коммутатор в ассоциативной алгебре : . Алгебра : пространство с операцией . Утверждение: — алгебра Ли.
- Примеры алгебр Ли: , , с векторным умножением ( в алгебре Ли ).
- Теорема Кэли для алгебр Ли. Пусть — поле и — -алгебра Ли; тогда
(1) для любых , обозначая через отображение , имеем следующий факт: — эндоморфизм векторного
пространства (то есть элемент алгебры Ли );
(2) обозначая через отображение , имеем следующий факт: — гомоморфизм алгебр Ли. - Алгебра дифференцирований алгебры : — подалгебра алгебры Ли .
- Теорема об алгебре Ли векторных полей. Пусть ; обозначим через векторное пространство ; тогда
(1) для любых , обозначая через отображение (здесь ), имеем
следующий факт: — дифференцирование алгебры (то есть элемент алгебры Ли );
(2) обозначая через отображение , имеем следующий факт: — инъективный гомоморфизм
векторных пространств, а также — подалгебра алгебры Ли ;
(3) определим на векторном пространстве бинарную операцию так, что для любых выполнено
(из пункта (2) следует, что это условие корректно определяет операцию ); тогда для любых
выполнено (здесь ), а также — алгебра Ли относительно операции .
2 Билинейная алгебра
3 Полилинейная алгебра
| ||||||||
|