Алгебра phys 1 весна 2016 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 73: Строка 73:
 
<h5>1.6.3&nbsp; Примеры использования жордановой нормальной формы в анализе и физике</h5>
 
<h5>1.6.3&nbsp; Примеры использования жордановой нормальной формы в анализе и физике</h5>
 
<ul><li>Утверждение: <i>пусть <math>a\in\mathrm{Mat}(n,K)</math> и <math>f\in K[x]</math>; тогда <math>f(a)=\mathrm c_e^{\mathrm{se}}\cdot f(\mathrm{jnf}(a))\cdot\mathrm c_{\mathrm{se}}^e</math></i>. Вычисление многочленов и рядов от жордановых клеток.
 
<ul><li>Утверждение: <i>пусть <math>a\in\mathrm{Mat}(n,K)</math> и <math>f\in K[x]</math>; тогда <math>f(a)=\mathrm c_e^{\mathrm{se}}\cdot f(\mathrm{jnf}(a))\cdot\mathrm c_{\mathrm{se}}^e</math></i>. Вычисление многочленов и рядов от жордановых клеток.
<li>Экспонента от оператора: <math>\mathrm e^a=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Утверждение: <i>пусть <math>a\circ b=b\circ a</math>; тогда <math>\mathrm e^{a+b}=\mathrm e^a\circ\mathrm e^b</math></i>. Утверждение: <math>\mathrm e^{\Bigl(\begin{smallmatrix}0&-\varphi\\\varphi&0\end{smallmatrix}\Bigr)}\!=\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>.
+
<li>Экспонента от оператора: <math>\mathrm e^a=\sum_{k=0}^\infty\frac1{k!}\,a^k</math>. Утверждение: <i>пусть <math>a\circ b=b\circ a</math>; тогда <math>\mathrm e^{a+b}\!=\mathrm e^a\!\circ\mathrm e^b</math></i>. Утверждение: <math>\mathrm e^{\Bigl(\begin{smallmatrix}0&-\varphi\\\varphi&0\end{smallmatrix}\Bigr)}\!=\Bigl(\begin{smallmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{smallmatrix}\Bigr)</math>.
<li>Однородная система линейных дифференциальных уравнений: <math>y'=a\cdot y</math> (<math>y\in\mathrm C^1(\mathbb R,\mathbb C^n)</math>, <math>a\in\mathrm{Mat}(n,\mathbb C)</math>). Решение: <math>y(x)=\mathrm e^{xa}\cdot v</math> (<math>v\in\mathbb C^n</math>).
+
<li>Однородная система линейных дифференциальных уравнений: <math>y'=a\cdot y</math> (<math>y\in\mathrm C^1(\mathbb R,\mathbb C^n)</math>, <math>a\in\mathrm{Mat}(n,\mathbb C)</math>). Решение: <math>y(x)=\mathrm e^{xa}\!\cdot v</math> (<math>v\in\mathbb C^n</math>).
 
<li>Сведе&#769;ние уравнения <math>y^{(n)}+p_{n-1}y^{(n-1)}+\ldots+p_0y=0</math> к системе уравнений <math>\Biggl(\begin{smallmatrix}y\\\vdots\\y^{(n-1)}\end{smallmatrix}\Biggr)'\!=a\cdot\!\Biggl(\begin{smallmatrix}y\\\vdots\\y^{(n-1)}\end{smallmatrix}\Biggr)</math>. Фундаментальная система решений.
 
<li>Сведе&#769;ние уравнения <math>y^{(n)}+p_{n-1}y^{(n-1)}+\ldots+p_0y=0</math> к системе уравнений <math>\Biggl(\begin{smallmatrix}y\\\vdots\\y^{(n-1)}\end{smallmatrix}\Biggr)'\!=a\cdot\!\Biggl(\begin{smallmatrix}y\\\vdots\\y^{(n-1)}\end{smallmatrix}\Biggr)</math>. Фундаментальная система решений.
 
<li>Стационарное ур.-е Шрёдингера для частицы в одномерной потенциальной яме с бесконечными стенками: <math>-\frac{\hbar^2}{2m}\psi''=E\,\psi</math> и <math>\psi(0)=\psi(l)=0</math>.
 
<li>Стационарное ур.-е Шрёдингера для частицы в одномерной потенциальной яме с бесконечными стенками: <math>-\frac{\hbar^2}{2m}\psi''=E\,\psi</math> и <math>\psi(0)=\psi(l)=0</math>.

Версия 02:00, 27 апреля 2016

1  Линейная алгебра

Содержание линейной алгебры состоит в проработке математического языка для выражения одной из самых общих естественно-
научных идей — идеи линейности. Возможно, ее важнейшим специальным случаем является принцип линейности малых прира-
щений: почти всякий естественный процесс почти всюду в малом линеен. Этот принцип лежит в основе всего математического
анализа и его приложений. Векторная алгебра трехмерного физического пространства, исторически ставшая краеугольным кам-
нем в здании линейной алгебры, восходит к тому же источнику: после Эйнштейна мы понимаем, что и физическое пространство
приближенно линейно лишь в малой окрестности наблюдателя. К счастью, эта малая окрестность довольно велика.
Физика двадцатого века резко и неожиданно расширила сферу применения идеи линейности, добавив к принципу линейности
малых приращений принцип суперпозиции векторов состояний. Грубо говоря, пространство состояний любой квантовой системы
является линейным пространством над полем комплексных чисел. В результате почти все конструкции комплексной линейной
алгебры превратились в аппарат, используемый для формулировки фундаментальных законов природы: от теории линейной
двойственности, объясняющей квантовый принцип дополнительности Бора, до теории представлений групп, объясняющей таб-
лицу Менделеева, «зоологию» элементарных частиц и даже структуру пространства-времени.
А.И. Кострикин, Ю.И. Манин. Линейная алгебра и геометрия

Материал первой половины второго семестра курса алгебры

Содержание первой половины второго семестра курса алгебры

1.1  Матрицы, базисы, координаты
  • 1.1.1  Пространства матриц, столбцов, строк
  • 1.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • 1.1.3  Преобразования координат при замене базиса
  • 1.1.4  Элементарные матрицы и приведение к ступенчатому виду
1.2  Линейные операторы (часть 1)
  • 1.2.1  Ядро и образ линейного оператора
  • 1.2.2  Ранг линейного оператора
  • 1.2.3  Системы линейных уравнений
1.3  Конструкции над векторными пространствами
  • 1.3.1  Прямая сумма векторных пространств и факторпространства
  • 1.3.2  Двойственное пространство
1.4  Полилинейные отображения, формы объема, определитель
  • 1.4.1  Отступление о симметрических группах
  • 1.4.2  Полилинейные отображения и формы объема
  • 1.4.3  Определитель линейного оператора
  • 1.4.4  Миноры матрицы и присоединенная матрица

Материал второй половины второго семестра курса алгебры

1.5  Линейные операторы (часть 2)

1.5.1  Многочлены от операторов
  • Многочлен от оператора: . Эвалюация — гомоморфизм колец и векторных пространств.
  • Кольцо, порожденное оператором: — коммутативное подкольцо и подпространство в .
  • Минимальный многочлен оператора: , приведен, ; .
  • Утверждение: пусть и ; тогда и, если и делит , то .
  • Теорема о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
    и ; тогда .
  • Следствие из теоремы о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
    , и , где , и попарно взаимно просты; тогда .
  • Проектор (идемпотент): . Нильпотентный оператор: .
1.5.2  Спектр оператора и характеристический многочлен оператора
  • Спектр оператора: ; если , то .
  • Характеристический многочлен матрицы: . Характеристический многочлен оператора: . Корректность определения.
  • Утверждение: . Утверждение: (и, значит, ).
  • Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
  • Две кратности: — кратность как корня многочлена (алгебраическая кратность) и — кратность как корня многочлена .
  • Лемма о минимальном и характеристическом многочленах. Пусть — поле, — вект. пр. над , , ; тогда
    (1) многочлен делит многочлен (и, значит, );
    (2) ;
    (3) если — нильпотентный оператор, то .
1.5.3  Собственные и корневые подпространства оператора
  • Обобщенные собственные подпространства: . Корневые подпространства: .
  • Цепь -инвариантных подпространств: ; вывод: .
  • Относительные геометрические кратности: и . Утверждение: .
  • Теорема о диагонализуемых операторах. Пусть — поле, — векторное пространство над полем , и ;
    тогда следующие условия эквивалентны:
    (1) существует такой упорядоченный базис , что — диагональная матрица;
    (2) (то есть раскладывается без кратностей в произведение многочленов степени в кольце );
    (3) (это разложение пространства в прямую сумму собственных подпространств оператора );
    (3') .
  • Лемма об обобщенных собственных подпространствах. Пусть — поле, — вект. пр. над , , , ; тогда
    (1) для любых выполнено ;
    (2) и .
  • Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем ,
    , и многочлен раскладывается в произведение многочленов степени в кольце (если , то
    это условие выполнено для любого оператора в силу алгебраической замкнутости поля ); тогда
    (1) (это разложение пространства в прямую сумму корневых подпространств оператора );
    (2) для любых , обозначая через оператор , имеем следующие факты: для любых
    выполнено , а также — нильпотентный оператор и .

1.6  Линейные операторы (часть 3)

1.6.1  Относительные базисы
  • Независимое подмножество в относительно : . Порождающее подмножество в относительно : .
  • Базис в относительно : одновременно независимое и порождающее подмножество в относительно . Три леммы-упражнения.

    Лемма 1 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда следующие условия эквивалентны:
    (1) — базис в относительно ;
    (1') — независимое подмножество в и ;
    (2) — максимальное независимое подмножество в относительно ;
    (3) — минимальное порождающее подмножество в относительно .

    Лемма 2 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда
    (1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
    (2) из любого конечного порождающего подмножества в относительно можно выделить базис в относительно .

    Лемма 3 об относительных базисах. Пусть — поле, — вект. пр. над , , — базис в относительно , — базис в
    относительно ; тогда — базис в относительно .

  • Теорема об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем , и ;
    обозначим через , , пространства , , соответственно; пусть — независимое подмножество в
    относительно ; тогда — биекция и — независимое подмножество в относительно .
  • Следствие из теоремы об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем ,
    , и ; тогда .
1.6.2  Жорданова нормальная форма оператора
  • Жордановы клетки: и . Прямая сумма матриц: .
  • Диаграммы Юнга. Жорданов блок: , где числа суть длины строк диаграммы Юнга .
  • Диаграмма Юнга : высоты столбцов диаграммы суть относительные геометрические кратности .
  • Теорема о жордановой нормальной форме нильпотентного оператора. Пусть — поле, — векторное пространство над , ,
    , — нильпотентный оператор; тогда существует такой упорядоченный базис , что .
  • Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , ,
    и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для
    любого оператора в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что
    (то есть матрица раскладывается в прямую сумму жордановых блоков).
1.6.3  Примеры использования жордановой нормальной формы в анализе и физике
  • Утверждение: пусть и ; тогда . Вычисление многочленов и рядов от жордановых клеток.
  • Экспонента от оператора: . Утверждение: пусть ; тогда . Утверждение: .
  • Однородная система линейных дифференциальных уравнений: (, ). Решение: ().
  • Сведе́ние уравнения к системе уравнений . Фундаментальная система решений.
  • Стационарное ур.-е Шрёдингера для частицы в одномерной потенциальной яме с бесконечными стенками: и .
  • Выводы из ур.-я Шрёдингера для частицы в потенциальной яме: — плотность вероятности, — энергия.

1.7  Алгебры

1.7.1  Определения и конструкции, связанные с алгебрами
  • -Алгебра — векторное пространство над с билинейным умножением — кольцо (в широком смысле слова) с умножением на скаляры из .
  • Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство.
  • Примеры алгебр: -алгебры , , , и ; -алгебры , с векторным умножением, и .
  • Структурные константы алгебры: . Утверждение: массив определяет умножение в -алгебре .
  • Теорема Кэли для алгебр. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство над полем ,
    получающееся из -алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — эндоморфизм векторного
    пространства (то есть элемент -алгебры );
    (2) обозначая через отображение , имеем следующий факт: — инъективный гомоморфизм алгебр с .
1.7.2  Полилинейные формы и многочлены от свободных переменных
  • Тензорное произведение полилинейных форм: . Билинейность операции .
  • Утверждение: пусть и ; тогда множество — базис пространства .
  • Алгебра полилинейных форм (ковариантных тензоров): . Утверждение: — ассоциативная -алгебра с .
  • Моном от свободных (некоммутирующих) переменных : , где . -Алгебра .
  • Теорема об алгебре полилинейных форм. Пусть — поле, — векторное пространство над , ; обозначим через число ;
    тогда отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с .
1.7.3  Тело кватернионов
1.7.4  Алгебры Ли (основные определения и примеры)

2  Билинейная алгебра

3  Полилинейная алгебра

В физике тензоры широко используются в теориях, обладающих геометрической природой (таких, как общая теория относительности)
или допускающих полную или значительную геометризацию (к таковым можно в значительной степени отнести практически все совре-
менные фундаментальные теории — электродинамика, релятивистская механика и т.д.), а также в теории анизотропных сред.
Вообще в физике термин «тензор» имеет тенденцию применяться только к тензорам над обычным трехмерным физическим простран-
ством или четырехмерным пространством-временем, или, в крайнем случае, над наиболее простыми и прямыми обобщениями этих
пространств, хотя принципиальная возможность применения его в более общих случаях остается.
Статья «Тензор» в русскоязычной Википедии
(Сказанное выше о тензорах справедливо также для векторов, ковекторов, полилинейных отображений (это частные случаи тензоров)
и в целом для очень многих абстрактных (вернее, инвариантных) объектов, изучаемых в алгебре. — Е.Е. Горячко.)