Алгебра phys 1 сентябрь–октябрь — различия между версиями
Материал из SEWiki
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 101: | Строка 101: | ||
<li><u>Теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) <math>\mathrm{GL}(V)=\{a\in\mathrm{End}(V)\mid\det a\ne0\}</math> (напоминание: <math>\mathrm{GL}(V)=\mathrm{End}(V)^\times</math>);<br>(2) для любых <math>a,b\in\mathrm{End}(V)</math> выполнено <math>\det(a\circ b)=\det a\cdot\det b</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{GL}(V)&\to K^\times\\a&\mapsto\det a\end{align}\!\biggr)</math> определено корректно и является гомоморфизмом групп).</i> | <li><u>Теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) <math>\mathrm{GL}(V)=\{a\in\mathrm{End}(V)\mid\det a\ne0\}</math> (напоминание: <math>\mathrm{GL}(V)=\mathrm{End}(V)^\times</math>);<br>(2) для любых <math>a,b\in\mathrm{End}(V)</math> выполнено <math>\det(a\circ b)=\det a\cdot\det b</math><br>(и, значит, отображение <math>\biggl(\!\begin{align}\mathrm{GL}(V)&\to K^\times\\a&\mapsto\det a\end{align}\!\biggr)</math> определено корректно и является гомоморфизмом групп).</i> | ||
<li>Определитель матрицы: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\ldots a^{u(n)}_n</math>. Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math>; тогда <math>\mathrm{vol}^e(v_1,\ldots,v_n)=\det\!\bigl(v_1^e\;\ldots\;v_n^e\bigr)</math></i>. | <li>Определитель матрицы: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\ldots a^{u(n)}_n</math>. Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math>; тогда <math>\mathrm{vol}^e(v_1,\ldots,v_n)=\det\!\bigl(v_1^e\;\ldots\;v_n^e\bigr)</math></i>. | ||
− | <li><u>Лемма об определителе оператора и определителе матрицы.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; | + | <li><u>Лемма об определителе оператора и определителе матрицы.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math>, <math>\dim V<\infty</math>,<br><math>a\in\mathrm{End}(V)</math> и <math>e\in\mathrm{OB}(V)</math>; обозначим через <math>n</math> число <math>\dim V</math>; тогда <math>\det a=\mathrm{vol}^e(a(e_1),\ldots,a(e_n))=\det a_e^e</math>.</i> |
<li>Утверждение: <i><math>\det a=\det a^\mathtt T</math> и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков</i>. | <li>Утверждение: <i><math>\det a=\det a^\mathtt T</math> и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков</i>. | ||
<li>Специальные линейные группы: <math>\mathrm{SL}(V)=\{a\in\mathrm{GL}(V)\mid\det a=1\}\trianglelefteq\mathrm{GL}(V)</math> и <math>\mathrm{SL}(n,K)=\{a\in\mathrm{GL}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>.</ul> | <li>Специальные линейные группы: <math>\mathrm{SL}(V)=\{a\in\mathrm{GL}(V)\mid\det a=1\}\trianglelefteq\mathrm{GL}(V)</math> и <math>\mathrm{SL}(n,K)=\{a\in\mathrm{GL}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>.</ul> |
Версия 01:41, 12 апреля 2016
1.1 Матрицы, базисы, координаты
1.1.1 Пространства матриц, столбцов, строк
- Пространство матриц . Пространство столбцов: . Пространство строк: .
- Матричные единицы. Стандартный базис пространства : .
- Стандартный базис пространства : . Стандартный базис пространства : .
- Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
- Строки матрицы: . Столбцы матрицы: . Утверждение: и .
- След матрицы: . Утверждение: пусть и ; тогда .
- Транспонирование матрицы: . Утверждение: пусть и ; тогда .
1.1.2 Столбцы координат векторов и матрицы гомоморфизмов
- Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
- Матрица гомоморфизма: . Утверждение: и . Утверждение: .
- Изоморфизм векторных пространств между и . Изоморфизм колец между и .
1.1.3 Преобразования координат при замене базиса
- Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
- Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
- Преобразование координат эндоморфизма: . Покомпонентная запись: .
1.1.4 Элементарные матрицы и приведение к ступенчатому виду
- Элементарные трансвекции и псевдоотражения .
- Элементарные преобразования над строками первого типа и второго типа .
- Элементарные преобразования над столбцами первого типа и второго типа .
- Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.
Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
(1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
(2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ). - Нахождение базиса подпространства, порожденного конечным множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.
1.2 Линейные операторы (часть 1)
1.2.1 Ядро и образ линейного оператора
- Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
- Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.
Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .
Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .
- Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
и ; тогда выполнено . - Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
тогда выполнено .
1.2.2 Ранг линейного оператора
- Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
- Утверждение: . Утверждение: и .
- Теорема о свойствах ранга. Пусть — поле, и ; тогда
(1) для любых матриц и выполнено ;
(2) существуют такие матрицы и , что ;
(3) и (то есть ранг по столбцам равен рангу по строкам).
1.2.3 Системы линейных уравнений
- Матричная запись систем. Однородные системы. Утверждение: пусть ; тогда .
- Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
- Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .
1.3 Конструкции над векторными пространствами
1.3.1 Прямая сумма векторных пространств и факторпространства
- Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.
Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ;
обозначим через отображение ; тогда
(1) , и ;
(2) если , то (это формула Грассмана);
(3) . - Инвариантное относительно эндоморфизма подпространство: . Матрица эндоморфизма, имеющего инвариантное подпространство.
- Матрица эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
- Факторпространство . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
- Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
1.3.2 Двойственное пространство
- Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
- Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
- Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .
- Сводная таблица о координатах. (В таблице — поле, — векторное пространство над полем , и .)
Инвариантный объект | Координаты относительно базиса | Преобразование координат при замене базиса | Пример использования в геометрии и физике | |||
---|---|---|---|---|---|---|
вектор — элемент пространства (тензор типа над ) |
(это изоморфизм векторных пространств) |
|
скорость в точке гладкого пути на многообразии | |||
ковектор — элемент пространства (тензор типа над ) |
(это изоморфизм векторных пространств) |
|
дифференциал в точке гладкой функции (скалярного поля) на многообразии | |||
эндоморфизм — элемент пространства (тензор типа над ) |
(это изоморфизм колец и векторных пространств) |
|
дифференциал в неподвижной точке гладкого отображения, действующего из многообразия в себя |
1.4 Полилинейные отображения, формы объема, определитель
1.4.1 Отступление о симметрических группах
- Симметрическая группа: . Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
- Утверждение: . Утверждение: .
- Транспозиции и фундаментальные транспозиции . Число циклов .
- Лемма об умножении на транспозицию. Пусть , , и ; тогда
(1) если числа и принадлежат одному циклу в перестановке , то ;
(2) если числа и принадлежат разным циклам в перестановке , то . - Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
(1) существуют такие транспозиции , что ;
(2) для любого из существования таких транспозиций , что , следует, что и . - Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
1.4.2 Полилинейные отображения и формы объема
- Пространства полилинейных отображений и и полилинейных форм и .
- Пространство симметричных полилинейных форм . Пространство антисимметричных полилинейных форм .
- Лемма об антисимметричных формах. Пусть — поле, — векторное пространство над полем , и ; тогда
следующие условия эквивалентны (если , то исключаются импликации (2)(1) и (3)(1)):
(1) ;
(2) для любых и таких , что — транспозиция, выполнено ;
(3) для любых и выполнено . - Пространство форм объема (). Форма объема, связанная с базисом: .
- Теорема о формах объема. Пусть — поле, — векторное пространство над , ; обозначим через число ; тогда
(1) для любых и выполнено ;
(2) для любых множество — базис пространства ;
(3) для любых и выполнено .
1.4.3 Определитель линейного оператора
- Определитель линейного оператора: , где . Корректность определения.
- Теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
(1) (напоминание: );
(2) для любых выполнено
(и, значит, отображение определено корректно и является гомоморфизмом групп). - Определитель матрицы: . Утверждение: пусть ; тогда .
- Лемма об определителе оператора и определителе матрицы. Пусть — поле, — векторное пространство над полем , ,
и ; обозначим через число ; тогда . - Утверждение: и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков.
- Специальные линейные группы: и .
1.4.4 Миноры матрицы и присоединенная матрица
- Миноры. Дополнительные миноры. Присоединенная матрица: дополнительный минор матрицы в позиции .
- Теорема о присоединенной матрице. Пусть — поле, и ; тогда
(1) и (в частности,
при имеем и при имеем ;
это формулы разложения определителя матрицы по -й строке матрицы и по -му столбцу матрицы соответственно);
(2) и, если , то . - Правило Крамера. Пусть — поле, , , и ; тогда .
- Теорема о базисном миноре. Пусть — поле, и ; тогда равен максимальному среди всех таких чисел
, что в матрице существует такая подматрица размера , что .