Алгебра phys 1 весна 2016 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 81: Строка 81:
 
<h5>1.4.3&nbsp; Определитель линейного оператора</h5>
 
<h5>1.4.3&nbsp; Определитель линейного оператора</h5>
 
<ul><li>Определитель линейного оператора: <math>\omega(a(v_1),\ldots,a(v_n))=\det a\cdot\omega(v_1,\ldots,v_n)</math>, где <math>\omega\in\mathrm{AMulti}^nV\setminus\{0\}</math>. Корректность определения.
 
<ul><li>Определитель линейного оператора: <math>\omega(a(v_1),\ldots,a(v_n))=\det a\cdot\omega(v_1,\ldots,v_n)</math>, где <math>\omega\in\mathrm{AMulti}^nV\setminus\{0\}</math>. Корректность определения.
<li><u>Теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) для любых <math>a,b\in\mathrm{End}(V)</math> выполнено <math>a\in\mathrm{Aut}(V)\,\Leftrightarrow\,\det a\ne0</math> и <math>\det(a\circ b)=\det a\cdot\det b</math>;<br>(2) отображение, действующее из <math>\,\mathrm{Aut}(V)</math> в <math>K^\times</math> по правилу <math>\,a\mapsto \det a</math> для любых <math>a\in\mathrm{Aut}V</math>, — гомоморфизм групп.</i>
+
<li><u>Теорема о главных свойствах определителя.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — векторное пространство над полем <math>K</math> и <math>\dim V<\infty</math>; тогда<br>(1) для любых <math>a,b\in\mathrm{End}(V)</math> выполнено <math>a\in\mathrm{GL}(V)\,\Leftrightarrow\,\det a\ne0</math> и <math>\det(a\circ b)=\det a\cdot\det b</math>;<br>(2) отображение, действующее из <math>\,\mathrm{GL}(V)</math> в <math>K^\times</math> по правилу <math>\,a\mapsto \det a</math> для любых <math>a\in\mathrm{GL}(V)</math>, — гомоморфизм групп.</i>
 
<li>Определитель матрицы: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\ldots a^{u(n)}_n</math>. Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math>; тогда <math>\det a=\mathrm{vol}^e(a(e_1),\ldots,a(e_n))=\det a_e^e</math></i>.
 
<li>Определитель матрицы: <math>\det a=\sum_{u\in\mathrm S_n}\mathrm{sgn}(u)\,a^{u(1)}_1\!\ldots a^{u(n)}_n</math>. Утверждение: <i>пусть <math>e\in\mathrm{OB}(V)</math>; тогда <math>\det a=\mathrm{vol}^e(a(e_1),\ldots,a(e_n))=\det a_e^e</math></i>.
<li>Утверждение: <i>(1) <math>\det a=\det a^\mathtt T</math>; (2) определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков</i>.
+
<li>Утверждение: <i><math>\det a=\det a^\mathtt T</math> и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков</i>.
<li>Миноры. Дополнительные миноры. Присоединенная матрица: <math>\mathrm{adj}(a)^i_j=(-1)^{i+j}</math><math>\bigl(</math>дополнительный минор матрицы <math>a</math> в позиции <math>(j,i)</math><math>\bigr)</math>.
+
<li>Специальные линейные группы: <math>\mathrm{SL}(V)=\{a\in\mathrm{GL}(V)\mid\det a=1\}\trianglelefteq\mathrm{GL}(V)</math> и <math>\mathrm{SL}(n,K)=\{a\in\mathrm{GL}(n,K)\mid\det a=1\}\trianglelefteq\mathrm{GL}(n,K)</math>.</ul>
 +
 
 +
<h5>1.4.4&nbsp; Миноры матрицы и присоединенная матрица</h5>
 +
<ul><li>Миноры. Дополнительные миноры. Присоединенная матрица: <math>\mathrm{adj}(a)^i_j=(-1)^{i+j}</math><math>\bigl(</math>дополнительный минор матрицы <math>a</math> в позиции <math>(j,i)</math><math>\bigr)</math>.
 
<li><u>Теорема о присоединенной матрице.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,K)</math>; тогда<br>(1) <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_i=\det a\Bigr)</math> и <math>\forall\,j\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^j_i\,a^i_j=\det a\Bigr)</math>;<br>(2) <math>\forall\,i,k\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_k=\det a\cdot\delta^i_k\Bigr)</math> и <math>\forall\,j,l\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^l_i\,a^i_j=\det a\cdot\delta^l_j\Bigr)</math>;<br>(3) <math>a\cdot\mathrm{adj}(a)=\mathrm{adj}(a)\cdot a=\det a\cdot\mathrm{id_n}</math> и, если <math>a\in\mathrm{GL}(n,K)</math>, то <math>a^{-1}=(\det a)^{-1}\!\cdot\mathrm{adj}(a)</math>.</i>
 
<li><u>Теорема о присоединенной матрице.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math> и <math>a\in\mathrm{Mat}(n,K)</math>; тогда<br>(1) <math>\forall\,i\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_i=\det a\Bigr)</math> и <math>\forall\,j\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^j_i\,a^i_j=\det a\Bigr)</math>;<br>(2) <math>\forall\,i,k\in\{1,\ldots,n\}\;\Bigl(\sum_{j=1}^na^i_j\,\mathrm{adj}(a)^j_k=\det a\cdot\delta^i_k\Bigr)</math> и <math>\forall\,j,l\in\{1,\ldots,n\}\;\Bigl(\sum_{i=1}^n\mathrm{adj}(a)^l_i\,a^i_j=\det a\cdot\delta^l_j\Bigr)</math>;<br>(3) <math>a\cdot\mathrm{adj}(a)=\mathrm{adj}(a)\cdot a=\det a\cdot\mathrm{id_n}</math> и, если <math>a\in\mathrm{GL}(n,K)</math>, то <math>a^{-1}=(\det a)^{-1}\!\cdot\mathrm{adj}(a)</math>.</i>
 
<li><u>Формулы Крамера.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math>, <math>a\in\mathrm{GL}(n,K)</math>, <math>y\in K^n</math> и <math>i\in\{1,\ldots,n\}</math>; тогда <math>(a^{-1}\!\cdot y)^i=\frac{\det\!\bigl(a_1\;\ldots\;a_{i-1}\;\,y\;\,a_{i+1}\;\ldots\;a_n\bigr)}{\det a}</math>.</i></ul>
 
<li><u>Формулы Крамера.</u> <i>Пусть <math>K</math> — поле, <math>n\in\mathbb N_0</math>, <math>a\in\mathrm{GL}(n,K)</math>, <math>y\in K^n</math> и <math>i\in\{1,\ldots,n\}</math>; тогда <math>(a^{-1}\!\cdot y)^i=\frac{\det\!\bigl(a_1\;\ldots\;a_{i-1}\;\,y\;\,a_{i+1}\;\ldots\;a_n\bigr)}{\det a}</math>.</i></ul>

Версия 04:30, 26 февраля 2016

1  Векторные пространства

1.1  Матрицы, базисы, координаты

1.1.1  Пространства матриц, столбцов, строк
  • Пространство матриц . Пространство столбцов: . Пространство строк: .
  • Матричные единицы. Стандартный базис пространства : .
  • Стандартный базис пространства : . Стандартный базис пространства : .
  • Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
  • Выделение строк матрицы: . Выделение столбцов матрицы: . Утверждение: и .
  • Транспонирование матрицы: . Утверждение: отображение — антиавтоморфизм кольца .
1.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
  • Матрица гомоморфизма: . Утверждение: и . Утверждение: .
  • Изоморфизм векторных пространств между и . Изоморфизм колец между и .
1.1.3  Преобразования координат при замене базиса
  • Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
  • Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
  • Преобразование координат эндоморфизма: . Покомпонентная запись: .
1.1.4  Элементарные матрицы и приведение к ступенчатому виду
  • Элементарные трансвекции и псевдоотражения .
  • Элементарные преобразования над строками первого типа и второго типа .
  • Элементарные преобразования над столбцами первого типа и второго типа .
  • Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Нахождение базиса подпространства, порожденного множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.

1.2  Линейные операторы

1.2.1  Ядро и образ линейного оператора
  • Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
  • Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.

    Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .

    Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .

  • Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
    и ; тогда выполнено .
  • Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
    тогда выполнено .
1.2.2  Ранг линейного оператора
  • Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Утверждение: . Утверждение: и .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) для любых матриц и выполнено ;
    (2) существуют такие матрицы и , что ;
    (3) и (то есть ранг по столбцам равен рангу по строкам).
1.2.3  Системы линейных уравнений
  • Матричная запись систем. Однородные системы. Утверждение: пусть ; тогда .
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
  • Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .

1.3  Конструкции над векторными пространствами

1.3.1  Прямая сумма векторных пространств и факторпространства
  • Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.

    Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ; обозначим через
    отображение, действующее из в по правилу для любых и ; тогда
    (1) , и ;
    (2) если , то ;
    (3) .

  • Инвариантное подпространство эндоморфизма: . Вид матрицы эндоморфизма, имеющего инвариантное подпространство.
  • Вид матрицы эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
  • Факторпространство . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
  • Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
1.3.2  Двойственное пространство
  • Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
  • Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
  • Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .

1.4  Полилинейные отображения, формы объема, определитель

1.4.1  Отступление о симметрических группах
  • Симметрическая группа: . Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
  • Утверждение: . Утверждение: .
  • Транспозиции и фундаментальные транспозиции . Число циклов .
  • Лемма об умножении на транспозицию. Пусть , , и ; тогда
    (1) если числа и принадлежат одному циклу в перестановке , то ;
    (2) если числа и принадлежат разным циклам в перестановке , то .
  • Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
    (1) существуют такие транспозиции , что ;
    (2) для любого из существования таких транспозиций , что , следует, что и .
  • Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
1.4.2  Полилинейные отображения и формы объема
  • Пространства полилинейных отображений и и полилинейных форм и .
  • Пространство симметричных полилинейных форм . Пространство антисимметричных полилинейных форм .
  • Лемма об антисимметричных формах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие условия эквивалентны (если , то исключаются импликации (2)(1) и (3)(1)):
    (1) ;
    (2) для любых и таких , что — транспозиция, выполнено ;
    (3) для любых и выполнено .
  • Пространство форм объема , где . Форма объема, связанная с базисом: .
  • Теорема о формах объема. Пусть — поле, — векторное пространство над , ; обозначим через число ; тогда
    (1) для любых и выполнено ;
    (2) для любых множество — базис пространства ;
    (3) для любых и выполнено .
1.4.3  Определитель линейного оператора
  • Определитель линейного оператора: , где . Корректность определения.
  • Теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) для любых выполнено и ;
    (2) отображение, действующее из в по правилу для любых , — гомоморфизм групп.
  • Определитель матрицы: . Утверждение: пусть ; тогда .
  • Утверждение: и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков.
  • Специальные линейные группы: и .
1.4.4  Миноры матрицы и присоединенная матрица
  • Миноры. Дополнительные миноры. Присоединенная матрица: дополнительный минор матрицы в позиции .
  • Теорема о присоединенной матрице. Пусть — поле, и ; тогда
    (1) и ;
    (2) и ;
    (3) и, если , то .
  • Формулы Крамера. Пусть — поле, , , и ; тогда .

1.5  Жорданова нормальная форма

2  Векторные пространства с билинейной формой