Алгебра phys 1 весна 2016 — различия между версиями
Материал из SEWiki
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 10: | Строка 10: | ||
<b>Матрицы, столбцы, строки</b> | <b>Матрицы, столбцы, строки</b> | ||
<ul><li>Пространство матриц <math>\mathrm{Mat}(p,n,K)</math>. Пространство столбцов: <math>K^p=\mathrm{Mat}(p,1,K)</math>. Пространство строк: <math>{}^n\!K=\mathrm{Mat}(1,n,K)</math>.</li> | <ul><li>Пространство матриц <math>\mathrm{Mat}(p,n,K)</math>. Пространство столбцов: <math>K^p=\mathrm{Mat}(p,1,K)</math>. Пространство строк: <math>{}^n\!K=\mathrm{Mat}(1,n,K)</math>.</li> | ||
− | <li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{ | + | <li>Матричные единицы. Стандартный базис пространства <math>\mathrm{Mat}(p,n,K)</math>: <math>\{e_i^j\mid i\in\{1,\ldots,p\},\,j\in\{1,\ldots,n\}\}</math>.</li> |
− | <li>Стандартный базис пространства <math>K^p</math>: <math>\{ | + | <li>Стандартный базис пространства <math>K^p</math>: <math>\{e_i\mid i\in\{1,\ldots,p\}\}</math>. Стандартный базис пространства <math>{}^n\!K</math>: <math>\{e^j\mid j\in\{1,\ldots,n\}\}</math>.</li> |
<li>Умножение матриц: <math>(b\cdot a)^i_k=\sum_{j=1}^pb^i_j\,a^j_k</math>. Внешняя ассоциативность умножения матриц. Кольцо <math>\mathrm{Mat}(n,K)</math>. Группа <math>\mathrm{GL}(n,K)</math>.</li> | <li>Умножение матриц: <math>(b\cdot a)^i_k=\sum_{j=1}^pb^i_j\,a^j_k</math>. Внешняя ассоциативность умножения матриц. Кольцо <math>\mathrm{Mat}(n,K)</math>. Группа <math>\mathrm{GL}(n,K)</math>.</li> | ||
<li>Выделение строк матрицы: <math>a^i=e^i\cdot a</math>. Выделение столбцов матрицы: <math>a_j=a\cdot e_j</math>. Утверждение: <math>(b\cdot a)^i=b^i\cdot a\,</math> и <math>\,(b\cdot a)_k=b\cdot a_k</math>.</li> | <li>Выделение строк матрицы: <math>a^i=e^i\cdot a</math>. Выделение столбцов матрицы: <math>a_j=a\cdot e_j</math>. Утверждение: <math>(b\cdot a)^i=b^i\cdot a\,</math> и <math>\,(b\cdot a)_k=b\cdot a_k</math>.</li> | ||
− | <li>Транспонирование матрицы: <math>(a^\mathtt T)^i_j=a^j_i</math>. Утверждение: | + | <li>Транспонирование матрицы: <math>(a^\mathtt T)^i_j=a^j_i</math>. Утверждение: отображение <math>a\mapsto a^\mathtt T</math> — антиавтоморфизм кольца <math>\mathrm{Mat}(n,K)</math>.</li></ul> |
<b>Столбцы координат векторов и матрицы гомоморфизмов</b> | <b>Столбцы координат векторов и матрицы гомоморфизмов</b> | ||
Строка 22: | Строка 22: | ||
<b>Преобразования координат при замене базиса</b> | <b>Преобразования координат при замене базиса</b> | ||
− | <ul><li>Матрица замены координат: <math>\mathrm c_e^\ | + | <ul><li>Матрица замены координат: <math>\mathrm c_e^\tilde e=(\mathrm{id}_V)_e^\tilde e</math>. Матрица замены базиса: <math>\mathrm c_\tilde e^e=(\mathrm{id}_V)_\tilde e^e</math>. Утверждение: <math>\mathrm c_\tilde e^\tilde\tilde e\cdot\mathrm c_e^\tilde e=\mathrm c_e^\tilde\tilde e\,</math> и <math>\,\mathrm c_e^\tilde e=\bigl(\mathrm c_\tilde e^e\bigr)^{-1}</math>.</li> |
− | + | <li>Преобразование базиса: <math>\tilde e=e\cdot\mathrm c_\tilde e^e</math>. Преобразование координат вектора: <math>v^\tilde e=\mathrm c_e^\tilde e\cdot v^e</math>. Покомпонентная запись: <math>v^\tilde i=\sum_{k=1}^{\dim V}(e_k)^\tilde i\,v^k</math>.</li> | |
− | <li>Преобразование базиса: <math>\ | + | <li>Преобразование координат эндоморфизма: <math>a_\tilde e^\tilde e=\mathrm c_e^\tilde e\cdot a_e^e\cdot\mathrm c_\tilde e^e</math>. Покомпонентная запись: <math>a^\tilde i_\tilde j=\sum_{k=1}^{\dim V}\sum_{l=1}^{\dim V}(e_k)^\tilde i(e_\tilde j)^l\,a_l^k</math>.</li></ul> |
− | + | ||
− | + | ||
− | + | ||
− | <li>Преобразование координат эндоморфизма: <math> | + | |
<b>Элементарные преобразования матриц</b> | <b>Элементарные преобразования матриц</b> | ||
− | <ul><li>Элементарные | + | <ul><li>Элементарные трансвекции: <math>\{\mathrm{id}_n+c\,e_i^j\mid c\in K,\,i,j\in\{1,\ldots,n\},\,i\ne j\}</math>. Элементарные псевдоотражения: <math>\{\mathrm{id}_n+(c-1)e_i^i\mid c\in K^\times,\,i\in\{1,\ldots,n\}\}</math>.</li> |
+ | <li>Элементарные преобразования над строками первого типа <math>a\mapsto(\mathrm{id}_p+c\,e_i^k)\cdot a</math> и второго типа <math>a\mapsto(\mathrm{id}_p+(c-1)e_i^i)\cdot a</math>.</li> | ||
+ | <li>Элементарные преобразования над столбцами первого типа <math>a\mapsto a\cdot(\mathrm{id}_n+c\,e_l^j)</math> и второго типа <math>a\mapsto a\cdot(\mathrm{id}_n+(c-1)e_j^j)</math>.</li> | ||
<li>Теорема о приведении матрицы к ступенчатому виду.</li></ul> | <li>Теорема о приведении матрицы к ступенчатому виду.</li></ul> |
Версия 20:36, 12 февраля 2016
Векторные пространства и линейные операторы
Отступление в первый семестр
- Обозначения из математической логики и теории множеств.
- Запись множеств и отображений. Обозначения по Минковскому.
- Отношения эквивалентности и разбиения. Слои отображений.
Матрицы, базисы, координаты
Матрицы, столбцы, строки
- Пространство матриц . Пространство столбцов: . Пространство строк: .
- Матричные единицы. Стандартный базис пространства : .
- Стандартный базис пространства : . Стандартный базис пространства : .
- Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
- Выделение строк матрицы: . Выделение столбцов матрицы: . Утверждение: и .
- Транспонирование матрицы: . Утверждение: отображение — антиавтоморфизм кольца .
Столбцы координат векторов и матрицы гомоморфизмов
- Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств между и .
- Матрица гомоморфизма: . Утверждение: и . Утверждение: .
- Изоморфизм векторных пространств между и . Изоморфизм колец между и .
Преобразования координат при замене базиса
- Матрица замены координат: . Матрица замены базиса: . Утверждение: и .
- Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
- Преобразование координат эндоморфизма: . Покомпонентная запись: .
Элементарные преобразования матриц
- Элементарные трансвекции: . Элементарные псевдоотражения: .
- Элементарные преобразования над строками первого типа и второго типа .
- Элементарные преобразования над столбцами первого типа и второго типа .
- Теорема о приведении матрицы к ступенчатому виду.