Алгебра, 1 семестр, 2014/15 — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
(ДЗ на 24.09.)
Строка 1: Строка 1:
 +
== ДЗ на 08.09 ==
 +
# Найдите наибольший возможный порядок в группе перестановок на 15 элементах.
 +
#
 +
## Выпишите всевозможные цикловые типы четных и нечетных перестановок в группе перестановок на 5 элементах
 +
## Докажите, что перестановка четна если в разложении её на циклы количество четных циклов четно (а иначе нечетна).
 +
# Докажите, что любую перестановку на 5 элементах можно записать как произведение циклов длины 3.
 +
 
== ДЗ на 24.09. ==
 
== ДЗ на 24.09. ==
 
# Пусть <math>X</math> - множество всех делителей <math>2002^{2002}</math>. Обозначим НОД чисел за <math>(a, b)</math>, а НОК за <math>[a, b]</math>. Введём отношение эквивалентности: <math>a \sim b \iff \left(\frac{[a,b]}{(a,b)}, 77\right) = 1</math>. Сколько элементов в фактормножестве <math>X/\sim</math>?
 
# Пусть <math>X</math> - множество всех делителей <math>2002^{2002}</math>. Обозначим НОД чисел за <math>(a, b)</math>, а НОК за <math>[a, b]</math>. Введём отношение эквивалентности: <math>a \sim b \iff \left(\frac{[a,b]}{(a,b)}, 77\right) = 1</math>. Сколько элементов в фактормножестве <math>X/\sim</math>?

Версия 13:26, 6 октября 2014

ДЗ на 08.09

  1. Найдите наибольший возможный порядок в группе перестановок на 15 элементах.
    1. Выпишите всевозможные цикловые типы четных и нечетных перестановок в группе перестановок на 5 элементах
    2. Докажите, что перестановка четна если в разложении её на циклы количество четных циклов четно (а иначе нечетна).
  2. Докажите, что любую перестановку на 5 элементах можно записать как произведение циклов длины 3.

ДЗ на 24.09.

  1. Пусть - множество всех делителей . Обозначим НОД чисел за , а НОК за . Введём отношение эквивалентности: . Сколько элементов в фактормножестве ?
  2. Найти минимальное отношение эквивалентности , содержащее данное отношение (т.е. есть транзитивное замыкание ) и количество элементов в фактормножестве .
    1. (положительные числа);
    2. ; ( обозначает " делится на без остатка")
  3. Найти количество отображений , обладающих указанными свойствами:
    1. при любом x
    2. при любом x.