Метапрограммирование на C++ — различия между версиями

Материал из SEWiki
Перейти к: навигация, поиск
Строка 111: Строка 111:
  
 
== Проверка наличия метода у класса ==
 
== Проверка наличия метода у класса ==
 +
 +
<source lang="cpp">
 +
#include <iostream>
 +
#include <vector>
 +
 +
typedef char true_type;
 +
class false_type { true_type a[2]; };
 +
 +
template<typename T, size_t (T::*)() const>
 +
struct wrap { };
 +
 +
template<typename T>
 +
true_type check(T*, wrap<T, &T::size> = wrap<T, &T::size>()) { }
 +
 +
template<typename T>
 +
false_type check(void*) { }
 +
 +
template<typename T>
 +
struct check_size {
 +
  static const bool value = sizeof(check<T>((T*)0)) == sizeof(true_type);
 +
};
 +
 +
class bar {
 +
  void no_size() { }
 +
};
 +
 +
int main() {
 +
  if (check_size<std::vector<int> >::value == true) {
 +
    std::cout << "Vector has a size field!" << std::endl;
 +
  }
 +
 +
  if (check_size<bar>::value != true) {
 +
    std::cout << "Bar doesn't have a size field!" << std::endl;
 +
  }
 +
}
 +
</source>
  
 
== Списки типов ==
 
== Списки типов ==

Версия 03:10, 8 мая 2011

Мы рассмотрим несколько <<необычных>> примеров использования шаблонов C++.

Статический assert

В следующем примере приведен код, который компилируется только на 64-разрядной платформе:

char[sizeof(int*)] == 8 ? 1 : -1]

Если код компилируется не на 64-разрядной платформе, то sizeof(int*) != 8, что приведет к объявлению массива a отрицательного размера, а это запрещено стандартом.

Эта идея используется в макросе BOOST_STATIC_ASSERT, предоставляемом модулем Static Assert библиотеки Boost.

Tag passing

Предположим, нам нужно написать функцию, которая циклически переставляет элементы массива:

template<typename It>
void rotate(It p, It, m, It q);

где p, q --- итераторы, указывающие на начало и конец массива, а элемент, на который указывает m, после завершения работы функции будет располагаться на месте элемента, на который указывает p.

Допустим, у нас есть разные реализации этой функции для разных типов итераторов:

template<typename It>
void rotate_bidirectional(It p, It, m, It q);

...

template<typename It>
void rotate_random_access(It p, It, m, It q);

Мы можем добавить к сигнатуре этих функций формальный параметр и перенести информацию о типе итератора, с которым работает эта функция, из ее имени в этот параметр:

template<typename It>
void rotate(It p, It, m, It q, bidirectional_tag);

...

template<typename It>
void rotate(It p, It, m, It q, random_access_tag);

Тогда исходную функцию можно реализовать так:

template<typename It>
void rotate(It p, It, m, It q) {
  rotate(p, m, q, iterator_traits<It>::iterator_category());
}

Замена числовых идентификаторов на типы

С помощью следующего трюка можно переписать функцию, поведение которой зависит от числового идентификатора, так, чтобы ее поведение зависело от формального параметра (как в предыдущем разделе):

void foo(int);

Мы можем определить шаблонную структуру:

template<int i>
struct int2type {
  static const int value = i;
}

Теперь функцию foo можно переписать так:

template<int i>
void foo(int2type<i>);

Substitution Failure Is Not An Error (SWINAE)

При создании экземпляров шаблонных функций могут возникать компиляции. Рассмотрим следующий код:

int diff(int a, int b) {
  return a - b;
}

template<typename T>
typename T::diff_type diff(T a, T b) {
  return a - b;
}

При вызове diff(3, 4) компилятор попытается создать экземпляр функции diff<int>(int, int), но это приведет к ошибке компиляции, поскольку int::diff_type не определено. Но эта ошибка не приводит к выдаче сообщения об ошибке и прекращению компиляции, поскольку есть нешаблонная функция c подходящей сигнатурой.

Проверка наличия метода у класса

#include <iostream>
#include <vector>

typedef char true_type;
class false_type { true_type a[2]; };

template<typename T, size_t (T::*)() const>
struct wrap { };

template<typename T>
true_type check(T*, wrap<T, &T::size> = wrap<T, &T::size>()) { }

template<typename T>
false_type check(void*) { }

template<typename T>
struct check_size {
  static const bool value = sizeof(check<T>((T*)0)) == sizeof(true_type);
};

class bar {
  void no_size() { }
};

int main() {
  if (check_size<std::vector<int> >::value == true) {
    std::cout << "Vector has a size field!" << std::endl;
  }

  if (check_size<bar>::value != true) {
    std::cout << "Bar doesn't have a size field!" << std::endl;
  }
}

Списки типов