Алгебра phys 2 ноябрь–декабрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 27: | Строка 27: | ||
<h5>14.3 Операции над тензорами</h5> | <h5>14.3 Операции над тензорами</h5> | ||
<ul><li>Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: <math>\bigl(T\otimes T'\bigr)^{i_1,\ldots,i_p\;\;\;\;\;\;\;i_1',\ldots,i_{p'}'}_{\;\;\;\;\;\;\;\;j_1,\ldots,j_q\;\;\;\;\;\;\;j_1',\ldots,j_{q'}'}\!\!=T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\!\cdot{T'}^{i_1',\ldots,i_{p'}'}_{\!j_1',\ldots,j_{q'}'}\!</math>. Кронекерово пр.-е матриц. | <ul><li>Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: <math>\bigl(T\otimes T'\bigr)^{i_1,\ldots,i_p\;\;\;\;\;\;\;i_1',\ldots,i_{p'}'}_{\;\;\;\;\;\;\;\;j_1,\ldots,j_q\;\;\;\;\;\;\;j_1',\ldots,j_{q'}'}\!\!=T^{i_1,\ldots,i_p}_{j_1,\ldots,j_q}\!\cdot{T'}^{i_1',\ldots,i_{p'}'}_{\!j_1',\ldots,j_{q'}'}\!</math>. Кронекерово пр.-е матриц. | ||
+ | <li>Тензорное произв.-е полилин. форм как полилин. форма (<math>\omega\in\mathrm{Multi}_kV</math>, <math>\omega'\!\in\mathrm{Multi}_{k'}V</math>): <math>(\omega\otimes\omega')(v_1,\ldots,v_{k+k'})=\omega(v_1,\ldots,v_k)\,\omega'(v_{k+1},\ldots,v_{k+k'})</math>. | ||
<li>Перестановка компонент: <math>\biggl(\!\begin{align}\mathrm{pat}_u\colon\mathcal T^kV&\to\mathcal T^kV\\v_1\otimes\ldots\otimes v_k&\mapsto v_{u^{-1}(1)}\!\otimes\ldots\otimes v_{u^{-1}(k)}\end{align}\!\biggr)</math>. Действие <math>\mathrm{pat}</math> группы <math>\mathrm S_k</math>. Перест.-ка в коорд.-х: <math>\bigl(\mathrm{pat}_u(T)\bigr)^{i_1,\ldots,i_k}\!=T^{i_{u(1)},\ldots,i_{u(k)}}</math>. | <li>Перестановка компонент: <math>\biggl(\!\begin{align}\mathrm{pat}_u\colon\mathcal T^kV&\to\mathcal T^kV\\v_1\otimes\ldots\otimes v_k&\mapsto v_{u^{-1}(1)}\!\otimes\ldots\otimes v_{u^{-1}(k)}\end{align}\!\biggr)</math>. Действие <math>\mathrm{pat}</math> группы <math>\mathrm S_k</math>. Перест.-ка в коорд.-х: <math>\bigl(\mathrm{pat}_u(T)\bigr)^{i_1,\ldots,i_k}\!=T^{i_{u(1)},\ldots,i_{u(k)}}</math>. | ||
<li>Свертка по <math>b</math>-й и <math>d</math>-й позициям: <math>\biggl(\!\begin{align}\mathrm{tr}^b_d\,\colon\mathcal T^p_{\;q}V&\to\mathcal T^{p-1}_{\;q-1}V\\v_1\otimes\ldots\otimes v_p\otimes\lambda_1\otimes\ldots\otimes\lambda_q&\mapsto\lambda_d(v_b)\;v_1\otimes\ldots\otimes v_{b-1}\!\otimes v_{b+1}\!\otimes\ldots\otimes v_p\otimes\lambda_1\otimes\ldots\otimes\lambda_{d-1}\!\otimes\lambda_{d+1}\!\otimes\ldots\otimes\lambda_q\end{align}\!\biggr)</math>. | <li>Свертка по <math>b</math>-й и <math>d</math>-й позициям: <math>\biggl(\!\begin{align}\mathrm{tr}^b_d\,\colon\mathcal T^p_{\;q}V&\to\mathcal T^{p-1}_{\;q-1}V\\v_1\otimes\ldots\otimes v_p\otimes\lambda_1\otimes\ldots\otimes\lambda_q&\mapsto\lambda_d(v_b)\;v_1\otimes\ldots\otimes v_{b-1}\!\otimes v_{b+1}\!\otimes\ldots\otimes v_p\otimes\lambda_1\otimes\ldots\otimes\lambda_{d-1}\!\otimes\lambda_{d+1}\!\otimes\ldots\otimes\lambda_q\end{align}\!\biggr)</math>. | ||
Строка 33: | Строка 34: | ||
<li><u>Теорема об обратном метрическом тензоре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\mathrm{Bi}(V)</math> и форма <math>\sigma</math> невырождена; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> выполнено <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)=\!\!\sum_{1\le i_1,i_2\le n}\!\!\sigma^{i_1,i_2}\,e_{i_1}\!\otimes e_{i_2}</math> (тензор <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)</math> — обратный тензор по отношению к тензору <math>\sigma</math>);<br>(2) под действием канонического изоморфизма <math>\biggl(\!\begin{align}V\otimes V&\to\mathrm{Bi}(V^*)\\v\otimes w&\mapsto\bigl((\lambda,\mu)\mapsto\lambda(v)\,\mu(w)\bigr)\!\end{align}\!\biggr)</math> тензор <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)</math> переходит в форму <math>(\lambda,\mu)\mapsto\sigma(\sharp^\sigma\lambda,\sharp^\sigma\mu)</math>;<br>(3) для любых <math>\lambda\in V^*</math> выполнено <math>\sharp^\sigma\lambda=\mathrm{tr}^2_1((\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)\otimes\lambda)</math>.</i> | <li><u>Теорема об обратном метрическом тензоре.</u> <i>Пусть <math>K</math> — поле, <math>V</math> — вект. пр.-во над <math>K</math>, <math>n=\dim V<\infty</math>, <math>\sigma\in\mathrm{Bi}(V)</math> и форма <math>\sigma</math> невырождена; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> выполнено <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)=\!\!\sum_{1\le i_1,i_2\le n}\!\!\sigma^{i_1,i_2}\,e_{i_1}\!\otimes e_{i_2}</math> (тензор <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)</math> — обратный тензор по отношению к тензору <math>\sigma</math>);<br>(2) под действием канонического изоморфизма <math>\biggl(\!\begin{align}V\otimes V&\to\mathrm{Bi}(V^*)\\v\otimes w&\mapsto\bigl((\lambda,\mu)\mapsto\lambda(v)\,\mu(w)\bigr)\!\end{align}\!\biggr)</math> тензор <math>(\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)</math> переходит в форму <math>(\lambda,\mu)\mapsto\sigma(\sharp^\sigma\lambda,\sharp^\sigma\mu)</math>;<br>(3) для любых <math>\lambda\in V^*</math> выполнено <math>\sharp^\sigma\lambda=\mathrm{tr}^2_1((\sharp^\sigma\!\otimes\sharp^\sigma)(\sigma)\otimes\lambda)</math>.</i> | ||
<li>Опускание индекса с <math>b</math>-й позиции: <math>(\mathrm{id}_V)^{\otimes(b-1)}\!\otimes\flat_\sigma\!\otimes(\mathrm{id}_V)^{\otimes(p-b)}\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes q}</math>. Подъем индекса с <math>d</math>-й поз.-и: <math>(\mathrm{id}_V)^{\otimes p}\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes(d-1)}\!\otimes\sharp^\sigma\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes(q-d)}</math>. | <li>Опускание индекса с <math>b</math>-й позиции: <math>(\mathrm{id}_V)^{\otimes(b-1)}\!\otimes\flat_\sigma\!\otimes(\mathrm{id}_V)^{\otimes(p-b)}\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes q}</math>. Подъем индекса с <math>d</math>-й поз.-и: <math>(\mathrm{id}_V)^{\otimes p}\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes(d-1)}\!\otimes\sharp^\sigma\!\otimes(\mathrm{id}_{V^*}\!)^{\otimes(q-d)}</math>. | ||
− | <li>Опускание индекса | + | <li>Опускание индекса и подъем индекса в коорд.-х: <math>T^{i_1,\ldots,i_{b-1}\,\,i_{b+1},\ldots,i_p}_{\;\;\;\;\;\;\;\;\;\;\;\,j\;\;\;\;\;\;\;\;\;\;\;j_1,\ldots,j_q}\!=\sum_{i_b=1}^nT^{i_1,\ldots,i_b,\ldots,i_p}_{j_1,\ldots,j_q}\sigma_{i_b,j}</math> и <math>T^{i_1,\ldots,i_p\;\;\;\;\;\;\;\;\;\;\,i}_{\;\;\;\;\;\;\;\;\,j_1,\ldots,j_{d-1}\,\,j_{d+1},\ldots,j_q}\!=\sum_{j_d=1}^n\sigma^{i,j_d}\,T^{i_1,\ldots,i_p}_{j_1,\ldots,j_d,\ldots,j_q}\!</math>.</ul> |
− | + | ||
<h3>15 Симметрические и внешние степени векторных пространств</h3> | <h3>15 Симметрические и внешние степени векторных пространств</h3> | ||
Строка 58: | Строка 58: | ||
<h5>15.3 Операции над внешними формами</h5> | <h5>15.3 Операции над внешними формами</h5> | ||
− | <ul><li><u>Теорема о внешнем произведении | + | <ul><li><u>Теорема о внешнем произведении внешних форм.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math>, <math>n=\dim V<\infty</math>,<br><math>k,k'\!\in\mathbb N_0</math>, <math>\omega\in\mathrm{AMulti}_kV</math> и <math>\omega'\!\in\mathrm{AMulti}_{k'}V</math>; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> выполнено <math>\omega=\frac1{k!}\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\omega_{j_1,\ldots,j_k}\,e^{j_1}\!\wedge\ldots\wedge e^{j_k}\!=\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le n}\!\!\!\!\omega_{j_1,\ldots,j_k}\,e^{j_1}\!\wedge\ldots\wedge e^{j_k}</math>;<br>(2) для любых <math>v_1,\ldots,v_{k+k'}\!\in V</math> выполнено <math>(\omega\wedge\omega')(v_1,\ldots,v_{k+k'})=\!\!\!\!\!\!\!\!\sum_{1\le j_1<\ldots<j_k\le k+k',\,1\le j_1'<\ldots<j_{k'}'\le k+k'}\!\!\!\!\!\!\!\!\varepsilon_{j_1,\ldots,j_k,j_1',\ldots,j_{k'}'}\omega(v_{j_1},\ldots,v_{j_k})\,\omega'(v_{j_1'},\ldots,v_{j_{k'}'})</math>.</i> |
− | + | ||
− | + | ||
− | + | ||
<li>Оператор Ходжа в псевдоевклид. пр.-ве с ориентацией: <math>\biggl(\!\begin{align}*\,\colon\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\lambda_1\wedge\ldots\wedge\lambda_k&\mapsto\bigl((v_{k+1},\ldots,v_n)\mapsto\mathrm{vol}(\sharp\,\lambda_1,\ldots,\sharp\,\lambda_k,v_{k+1},\ldots,v_n)\bigr)\!\end{align}\!\biggr)</math>. Пример: <math>*\,1=\mathrm{vol}\,</math>. | <li>Оператор Ходжа в псевдоевклид. пр.-ве с ориентацией: <math>\biggl(\!\begin{align}*\,\colon\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\lambda_1\wedge\ldots\wedge\lambda_k&\mapsto\bigl((v_{k+1},\ldots,v_n)\mapsto\mathrm{vol}(\sharp\,\lambda_1,\ldots,\sharp\,\lambda_k,v_{k+1},\ldots,v_n)\bigr)\!\end{align}\!\biggr)</math>. Пример: <math>*\,1=\mathrm{vol}\,</math>. | ||
− | <li>Пример: <math>\sharp*(\flat\,v_1\wedge\ldots\wedge\flat\,v_{n-1})=v_1\times\ldots\times v_{n-1}</math>. Лемма об операторе Ходжа в координатах | + | <li>Пример: <math>\sharp*(\flat\,v_1\wedge\ldots\wedge\flat\,v_{n-1})=v_1\times\ldots\times v_{n-1}</math>. Лемма об операторе Ходжа в координатах. |
<p><u>Лемма об операторе Ходжа в координатах.</u> <i>Пусть <math>V</math> — псевдоевклид. пр.-во с ориент., <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math>, <math>k\in\{0,\ldots,n\}</math> и <math>\omega\in\mathrm{AMulti}_kV</math>; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> и <math>j_{k+1},\ldots,j_n\in\{1,\ldots,n\}</math> выполнено <math>(*\,\omega)_{j_{k+1},\ldots,j_n}\!=\frac1{k!}\,\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le i_1,\ldots,i_k\le n}\!\!\!\varepsilon_{i_1,\ldots,i_k,j_{k+1},\ldots,j_n}\omega^{i_1,\ldots,i_k}</math>;<br>(2) для любых <math>e\in\mathrm{OnOB}_{>0}(V)</math> и <math>j_1,\ldots,j_k\in\{1,\ldots,n\}</math> выполнено <math>*\,(e^{j_1}\!\wedge\ldots\wedge e^{j_k})=(e_{j_1}\!\!\mid\!e_{j_1})\cdot\ldots\cdot(e_{j_k}\!\!\mid\!e_{j_k})\,\varepsilon_{j_1,\ldots,j_n}e^{j_{k+1}}\!\wedge\ldots\wedge e^{j_n}</math>, где<br><math>j_{k+1},\ldots,j_n</math> образуют дополнительный набор к <math>j_1,\ldots,j_k</math> (то есть <math>\{j_1,\ldots,j_n\}=\{1,\ldots,n\}</math> и <math>j_{k+1}\!<\ldots<j_n</math>); в частности, <math>*\,\mathrm{vol}=(-1)^{\mathrm{ind}_{<0}(\sigma)}</math>.</i></p> | <p><u>Лемма об операторе Ходжа в координатах.</u> <i>Пусть <math>V</math> — псевдоевклид. пр.-во с ориент., <math>\sigma=(\,\mid\,)</math>, <math>n=\dim V</math>, <math>k\in\{0,\ldots,n\}</math> и <math>\omega\in\mathrm{AMulti}_kV</math>; тогда<br>(1) для любых <math>e\in\mathrm{OB}(V)</math> и <math>j_{k+1},\ldots,j_n\in\{1,\ldots,n\}</math> выполнено <math>(*\,\omega)_{j_{k+1},\ldots,j_n}\!=\frac1{k!}\,\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le i_1,\ldots,i_k\le n}\!\!\!\varepsilon_{i_1,\ldots,i_k,j_{k+1},\ldots,j_n}\omega^{i_1,\ldots,i_k}</math>;<br>(2) для любых <math>e\in\mathrm{OnOB}_{>0}(V)</math> и <math>j_1,\ldots,j_k\in\{1,\ldots,n\}</math> выполнено <math>*\,(e^{j_1}\!\wedge\ldots\wedge e^{j_k})=(e_{j_1}\!\!\mid\!e_{j_1})\cdot\ldots\cdot(e_{j_k}\!\!\mid\!e_{j_k})\,\varepsilon_{j_1,\ldots,j_n}e^{j_{k+1}}\!\wedge\ldots\wedge e^{j_n}</math>, где<br><math>j_{k+1},\ldots,j_n</math> образуют дополнительный набор к <math>j_1,\ldots,j_k</math> (то есть <math>\{j_1,\ldots,j_n\}=\{1,\ldots,n\}</math> и <math>j_{k+1}\!<\ldots<j_n</math>); в частности, <math>*\,\mathrm{vol}=(-1)^{\mathrm{ind}_{<0}(\sigma)}</math>.</i></p> | ||
− | < | + | <li><u>Теорема об операторе Ходжа.</u> <i>Пусть <math>V</math> — псевдоевкл. пр.-во с ориент., <math>q=\mathrm{ind}_{<0}((\,\mid\,))</math>, <math>n=\dim V</math> и <math>k\in\{0,\ldots,n\}</math>; тогда<br>(1) для любых <math>\omega\in\mathrm{AMulti}_kV</math> выполнено <math>*\!*\omega=(-1)^{k(n-k)+q}\,\omega</math> (и, значит, <math>\biggl(\!\begin{align}\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{n-k}V\\\omega&\mapsto*\,\omega\end{align}\!\biggr)</math> — изоморфизм векторных пространств);<br>(2) для любых <math>\psi,\omega\in\mathrm{AMulti}_kV</math> выполнено <math>\psi\wedge*\,\omega=(\psi\!\mid\!\omega)\,\mathrm{vol}</math>, где <math>(\psi\!\mid\!\omega)=\frac1{k!}\,\psi(\sharp^{\wedge k}\omega)</math> (в координатах <math>(\psi\!\mid\!\omega)=\frac1{k!}\!\!\sum_{1\le j_1,\ldots,j_k\le n}\!\!\!\psi_{j_1,\ldots,j_k}\omega^{j_1,\ldots,j_k}</math>);<br>(3) для любых <math>v,w\in V</math> выполнено <math>*\,(\flat\,v\wedge*\,\flat\,w)=(-1)^q\,(v\!\mid\!w)</math>;<br>(4) если <math>n=3</math>, то для любых <math>u,v,w\in V</math> выполнено <math>(u\times v)\times w=(-1)^q\,((u\!\mid\!w)\,v-(v\!\mid\!w)\,u)</math>.<br>(5) <math>(v_1\times\ldots\times v_{n-1})^i=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\!\!\!\sum_{1\le j_1,\ldots,j_{n-1}\le n}\!\!\!\varepsilon^{\;\;\;\;\;\;\;\;\;\;\;i}_{j_1,\ldots,j_{n-1}}\,v_1^{j_1}\!\cdot\ldots\cdot v_{n-1}^{j_{n-1}}</math>.</i> |
+ | <li>Внутреннее произведение внешних форм на вектор <math>v</math>: <math>\biggl(\!\begin{align}i_v\colon\mathrm{AMulti}_kV&\to\mathrm{AMulti}_{k-1}V\\\omega&\mapsto\bigl((v_2,\ldots,v_k)\mapsto\omega(v,v_2,\ldots,v_k)\bigr)\!\end{align}\!\biggr)</math>. Утверждение: <math>i_v(\omega)=\mathrm{tr}^1_1(v\otimes\omega)</math>. | ||
+ | <li>Утверждение: <math>i_v(e^{j_1}\!\wedge\ldots\wedge e^{j_k})=\sum_{t=1}^k(-1)^{t-1}\,v^{j_t}e^{j_1}\!\wedge\ldots\wedge e^{j_{t-1}}\!\wedge e^{j_{t+1}}\!\wedge\ldots\wedge e^{j_k}</math>. Продолжение оператора <math>i_v</math> до эндоморфизма пространства <math>\mathsf\Lambda(V^*)</math>. | ||
+ | <li><u>Теорема о внутреннем произведении.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — вект. пр. над <math>K</math>, <math>\dim V<\infty</math> и <math>v\in V</math>; тогда <math>i_v^2=0</math> и для любых <math>k,k'\!\in\mathbb N_0</math>,<br><math>\omega\in\mathrm{AMulti}_kV</math> и <math>\omega'\!\in\mathrm{AMulti}_{k'}V</math> выполнено <math>i_v(\omega\wedge\omega')=i_v(\omega)\wedge\omega'+(-1)^k\,\omega\wedge i_v(\omega')</math> (и, значит, <math>i_v</math> — супердифференцирование алгебры <math>\,\mathsf\Lambda(V^*)</math>)</i>.</ul> | ||
<h3>16 Многообразия (часть 2)</h3> | <h3>16 Многообразия (часть 2)</h3> |
Версия 23:00, 14 ноября 2018
Подробный план второй половины третьего семестра курса алгебры
|
14 Тензорные произведения векторных пространств
14.1 Определения и конструкции, связанные с тензорами
- Тензорное произведение вект. пространств: , где и — подпространство полилинеаризации.
- Разложимый тензор: . Ранг тензора : — минимум среди всех таких , что равен сумме разл. тензоров.
- Лемма к теореме об универсальности тензорного произведения. Пусть — поле, и — векторные простр.-ва над полем ; тогда
и отображение — полилинейный оператор. - Теорема об универсальности тензорного произведения. Пусть — поле, и — вект. простр.-ва над полем ; тогда для любых
существ. единств. такой , что
(и, значит, отображение — изоморфизм векторных пространств). - Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и — базисы
пространств соответственно; тогда все тензоры , где , попарно различны и вместе образуют базис
пространства , а также, если , то . - Тензорное произв.-е тензоров: . Тензорное произв.-е линейных операторов (, ): .
- Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда ,
и . - Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
(1) — инъективный линейный оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в;
(2) — инъект. лин. оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в.
14.2 Тензоры типа и тензорная алгебра
- Пространство тензоров типа над : . Примеры: , , , , .
- Примеры: — простр.-во структур алгебры на , — простр.-во структур коалгебры на , .
- Теорема о канонических изоморфизмах для тензоров типа (p,q). Пусть — поле, — вект. простр.-во над полем , и ; тогда
(1) — изоморфизм векторных пространств;
(2) — изоморфизм векторных пространств;
(3) — изоморфизм вект. простр.-в. - Тензор типа в координатах: . Примеры: , , .
- Примеры: — метрический тензор, — форма объема, связанная с упоряд. базисом .
- Преобразование при замене базиса: . Примеры: , .
- Тензорная алгебра над : — ассоциативная -алгебра с (в опр.-и умнож.-я используются изоморфизмы ).
- Теорема о тензорной алгебре. Пусть — поле, — векторное пространство над полем , и ; тогда множество
— базис алгебры , и для любых его элементов и выполнено
, а также — алгебра многочленов от своб. перем.-х.
14.3 Операции над тензорами
- Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: . Кронекерово пр.-е матриц.
- Тензорное произв.-е полилин. форм как полилин. форма (, ): .
- Перестановка компонент: . Действие группы . Перест.-ка в коорд.-х: .
- Свертка по -й и -й позициям: .
- Свертка по -й и -й позициям в координатах: . Теорема о свертках тензоров малой валентности.
Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
(1) для любых , и выполнено , , и ;
(2) для любых и выполнено и . - Теорема об обратном метрическом тензоре. Пусть — поле, — вект. пр.-во над , , и форма невырождена; тогда
(1) для любых выполнено (тензор — обратный тензор по отношению к тензору );
(2) под действием канонического изоморфизма тензор переходит в форму ;
(3) для любых выполнено . - Опускание индекса с -й позиции: . Подъем индекса с -й поз.-и: .
- Опускание индекса и подъем индекса в коорд.-х: и .
15 Симметрические и внешние степени векторных пространств
15.1 Определения и конструкции, связанные с симметричными и антисимметричными тензорами
- Симметрическая степень: . Внешняя степень: .
- Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах. Пусть — поле, , — вект. пр.-во над ,
и ; обозначим через канонический изоморфизм ; тогда
(1) (напоминание: и );
(2) и (далее пространства и отождествляются при помощи изоморфизма );
(3) и (далее пространства и отождествляются при помощи изоморфизма ). - Оператор симметризации: . Оператор альтернирования: . Лемма о симметризации и альтернировании.
Лемма о симметризации и альтернировании. Пусть — поле, , — векторное пространство над полем и ; тогда
(1) для любых выполнено и ;
(2) для любых выполнено и для любых выполнено ;
(3) и , а также и (и, значит, — проектор на и — проектор на ). - Симметрич. и внешнее произв.-е векторов: и . Пример: .
- Лемма к теореме об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр. над и ; тогда
(1) и отображение — симметричный полилинейный оператор;
(2) и отображение — антисимметричный полилинейный оператор. - Теорема об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр.-ва над и ; тогда
(1) для любых существует единственный такой , что ;
(2) для любых существует единственный такой , что . - Теорема о базисе симметрической степени и внешней степени. Пусть — поле, , — векторное пространство над полем , ,
и ; тогда
(1) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(2) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(3) и . - Симметрич. и внешняя степени лин. оператора (): и .
15.2 Симметрическая алгебра и внешняя алгебра
- Симметрическое произв.-е и внешнее произв.-е тензоров (, ): и .
- Симметриз.-я и альтерн.-е в коорд.: и .
- Симметрическое и внешнее произв. в коорд.: и .
- Теорема о симметрическом произведении и внешнем произведении тензоров. Пусть — поле, , — векторное простр.-во над полем ,
, и , , ; тогда
(1) и ;
(2) и ;
(3) и ;
(4) и ;
(5) и . - Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над : — ассоциативная коммутативная -алгебра с .
- Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над : — ассоциативная суперкоммутативная -алгебра с .
- Теорема о симметрической алгебре и внешней алгебре. Пусть — поле, , — вект. пр.-во над , и ; тогда
(1) — базис алгебры , и для любых его элементов и
выполнено , где числа суть числа , упорядоченные по неубыванию;
(2) — базис алгебры , и для любых его элементов и
выполнено , где суть , упоряд. по неубыванию;
(3) — алгебра многочленов от коммут. перем.-х, и — алгебра многочленов от антикоммут. перем.-х.
15.3 Операции над внешними формами
- Теорема о внешнем произведении внешних форм. Пусть — поле, , — векторное пространство над полем , ,
, и ; тогда
(1) для любых выполнено ;
(2) для любых выполнено . - Оператор Ходжа в псевдоевклид. пр.-ве с ориентацией: . Пример: .
- Пример: . Лемма об операторе Ходжа в координатах.
Лемма об операторе Ходжа в координатах. Пусть — псевдоевклид. пр.-во с ориент., , , и ; тогда
(1) для любых и выполнено ;
(2) для любых и выполнено , где
образуют дополнительный набор к (то есть и ); в частности, . - Теорема об операторе Ходжа. Пусть — псевдоевкл. пр.-во с ориент., , и ; тогда
(1) для любых выполнено (и, значит, — изоморфизм векторных пространств);
(2) для любых выполнено , где (в координатах );
(3) для любых выполнено ;
(4) если , то для любых выполнено .
(5) . - Внутреннее произведение внешних форм на вектор : . Утверждение: .
- Утверждение: . Продолжение оператора до эндоморфизма пространства .
- Теорема о внутреннем произведении. Пусть — поле, , — вект. пр. над , и ; тогда и для любых ,
и выполнено (и, значит, — супердифференцирование алгебры ).
16 Многообразия (часть 2)
16.1 Векторные поля, ковекторные поля, тензорные поля
- Касательное и кокасательное расслоения: и . Структура многообр.-я на и ; отобр.-е проекции на : .
- Пр.-ва векторн. полей и ковект. полей (-форм): и .
- Умножение вект. полей и -форм на функции. Действие -форм на вект. поля. Локальные вект. поля и -формы . Утверждение: .
- Векторные поля и -формы в коорд.: и . Преобраз.-я при замене коорд.: и .
- Расслоение тензоров типа : . Пр.-во тензорн. полей типа : .
- В коорд.: . Пример: — поле форм от перем.-х.
- Преобр.-е координат тензорного поля при замене координат на : .
- Пр.-во дифференциальн. -форм: . Алгебра диффер. форм: .
16.2 Дифференциальные операции на многообразиях
- Производная Ли: . Утверждение: и . Коммутатор вект. полей: .
- Теорема о коммутаторе. Пусть — многообразие и ; тогда
(1) для любых , определяя в координатах векторное поле на по формуле , имеем
следующие факты: это определение не зависит от выбора системы координат, и операция удовлетворяет определению коммутатора;
(2) операция коммутатора на определена однозначно;
(3) — алгебра Ли относ.-но операции , и отобр.-е — изоморфизм алгебр Ли (без док.-ва сюръективности). - Внешний дифференциал: — супердифференц.-е алгебры и . Утверждение: .
- Теорема о внешнем дифференциале. Пусть — многообразие и ; тогда
(1) для любых и , определяя в координатах форму на по формуле
(эта формула эквивалентна формуле ), имеем следующие факты: это определение не зависит от
выбора системы координат (эскиз доказательства), и операция удовлетворяет определению внешнего дифференциала;
(2) операция внешнего дифференциала на определена однозначно. - Утверждение: . Замкнутая форма: . Точная форма: (). Лемма Пуанкаре: в замкнутые формы точны (без доказат.-ва).
- Ковариантная произв. вект. полей: и .
- Теорема о ковариантной производной. Пусть — многообразие, и в каждой системе координат из атласа на заданы функции ,
где , преобразующиеся при замене координ. по формуле ;
тогда для любых , определяя в координ. векторное поле на по формуле , имеем
следующие факты: это определение не зависит от выбора системы координат, и операция удовлетворяет определению ковариантной произв.-й. - Векторное поле вдоль кривой: и . Скорость вдоль : . Ускорение: .
16.3 Римановы и псевдоримановы многообразия (основные определения и примеры)
- Метрический тензор сигнатуры : и для любых выполнено — невыр. симметр. билин. форма сигнатуры на .
- Псевдориманово многообр. сигнат. — многообр. с метр. тензором сигнат. . Риманово многообр.: . Примеры: , пр.-во Лобачевского .
- Бемоль: . Диез: . Градиент функции: . Градиент в коорд.: .
- Ориентация многообр. — такой выбор ориентаций всех пр.-в , где , что . Атлас .
- Канонич. форма объема. Оператор Ходжа: . Ротор: . Дивергенция: . Лапласиан: .
- Символы Кристоффеля: . Теорема о связности Леви-Чивиты. Длина: ; незав.-сть от параметриз.-и.
Теорема о связности Леви-Чивиты. Пусть — псевдориманово многообразие; тогда
(1) символы Кристоффеля на преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют
операцию ковариантной производной на (она называется связностью Леви-Чивиты), причем эта операция обладает следующими свойствами:
и ;
(2) операция ковариантной производной на , обладающая свойствами из пункта (1), определена однозначно (без доказательства). - Геодезические — экстремали функционала длины. Условие на геодезические (ур.-е Эйлера–Лагранжа для функционала длины): (если ).
- Тензор Римана (кривизны): . Тензор Риччи: . Скалярная кривизна: .