Алгебра phys 2 ноябрь–декабрь — различия между версиями
Goryachko (обсуждение | вклад) |
Goryachko (обсуждение | вклад) |
||
Строка 6: | Строка 6: | ||
<h3>14 Тензорные произведения векторных пространств</h3> | <h3>14 Тензорные произведения векторных пространств</h3> | ||
<h5>14.1 Определения и конструкции, связанные с тензорами</h5> | <h5>14.1 Определения и конструкции, связанные с тензорами</h5> | ||
− | <ul><li>Тензорное произведение пространств: <math>V_1\otimes\ldots\otimes V_k=\mathcal F/\mathcal F_0</math>, где <math>\mathcal F=\mathrm{FinFunc}(V_1\times\ldots\times V_k,K)</math> и <math>\mathcal F_0</math> — подпространство полилинеаризации. | + | <ul><li>Тензорное произведение вект. пространств: <math>V_1\otimes\ldots\otimes V_k=\mathcal F/\mathcal F_0</math>, где <math>\mathcal F=\mathrm{FinFunc}(V_1\times\ldots\times V_k,K)</math> и <math>\mathcal F_0</math> — подпространство полилинеаризации. |
<li>Разложимый тензор: <math>v_1\otimes\ldots\otimes v_k=(v_1,\ldots,v_k)+\mathcal F_0</math>. Ранг тензора <math>T</math>: <math>\mathrm{rk}(T)</math> — минимум среди всех таких <math>m</math>, что <math>T</math> равен сумме <math>m</math> разл. тензоров. | <li>Разложимый тензор: <math>v_1\otimes\ldots\otimes v_k=(v_1,\ldots,v_k)+\mathcal F_0</math>. Ранг тензора <math>T</math>: <math>\mathrm{rk}(T)</math> — минимум среди всех таких <math>m</math>, что <math>T</math> равен сумме <math>m</math> разл. тензоров. | ||
<li><u>Лемма к теореме об универсальности тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k</math> — векторные простр.-ва над полем <math>K</math>; тогда<br><math>V_1\otimes\ldots\otimes V_k=\bigl\langle\{v_1\otimes\ldots\otimes v_k\mid v_1\in V_1,\ldots,v_k\in V_k\}\bigr\rangle</math> и отображение <math>\biggl(\!\begin{align}V_1\times\ldots\times V_k&\to V_1\otimes\ldots\otimes V_k\\(v_1,\ldots,v_k)&\mapsto v_1\otimes\ldots\otimes v_k\end{align}\!\biggr)</math> — полилинейный оператор.</i> | <li><u>Лемма к теореме об универсальности тензорного произведения.</u> <i>Пусть <math>K</math> — поле, <math>k\in\mathbb N_0</math> и <math>V_1,\ldots,V_k</math> — векторные простр.-ва над полем <math>K</math>; тогда<br><math>V_1\otimes\ldots\otimes V_k=\bigl\langle\{v_1\otimes\ldots\otimes v_k\mid v_1\in V_1,\ldots,v_k\in V_k\}\bigr\rangle</math> и отображение <math>\biggl(\!\begin{align}V_1\times\ldots\times V_k&\to V_1\otimes\ldots\otimes V_k\\(v_1,\ldots,v_k)&\mapsto v_1\otimes\ldots\otimes v_k\end{align}\!\biggr)</math> — полилинейный оператор.</i> | ||
Строка 39: | Строка 39: | ||
<h5>15.1 Определения и конструкции, связанные с симметричными и антисимметричными тензорами</h5> | <h5>15.1 Определения и конструкции, связанные с симметричными и антисимметричными тензорами</h5> | ||
<ul><li>Симметрическая степень: <math>\mathsf S^kV=\{T\in\mathcal T^kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{pat}_u(T)=T\bigr)\}</math>. Внешняя степень: <math>\mathsf\Lambda^kV=\{T\in\mathcal T^kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{pat}_u(T)=\mathrm{sgn}(u)\,T\bigr)\}</math>. | <ul><li>Симметрическая степень: <math>\mathsf S^kV=\{T\in\mathcal T^kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{pat}_u(T)=T\bigr)\}</math>. Внешняя степень: <math>\mathsf\Lambda^kV=\{T\in\mathcal T^kV\mid\forall\,u\in\mathrm S_k\,\bigl(\mathrm{pat}_u(T)=\mathrm{sgn}(u)\,T\bigr)\}</math>. | ||
− | <li><u>Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — вект. пр.-во над <math>K</math>,<br><math>k\in\mathbb N_0</math> и <math>\dim V<\infty</math>; обозначим через <math>\iota</math> канонический изоморфизм <math>\biggl(\!\begin{align}\mathcal T^kV^*\!&\to\mathrm{Multi}_kV\\\lambda_1\otimes\ldots\otimes\lambda_k&\mapsto\bigl((v_1,\ldots,v_k)\mapsto\lambda_1(v_1)\cdot\ldots\cdot\lambda_k(v_k)\bigr)\!\end{align}\!\biggr)</math>; тогда<br>(1) <math>\forall\,u\in\mathrm S_k\,\bigl(\iota\circ\mathrm{pat}_u=\mathrm{paf}_u\!\circ\iota\bigr)</math> (напоминание: <math>\mathrm{pat}_u(\lambda_1\otimes\ldots\otimes\lambda_k)=\lambda_{u^{-1}(1)}\!\otimes\ldots\otimes\lambda_{u^{-1}(k)}</math> и <math>(\mathrm{paf}_u(\omega))(v_1,\ldots,v_k)=\omega(v_{u(1)},\ldots,v_{u(k)})</math>);<br>(2) <math>\iota(\mathsf S^kV^*)=\mathrm{SMulti}_kV</math> и <math>\,\mathsf S^kV^*\!\cong\mathrm{SMulti}_kV</math> (далее пространства <math>\,\mathsf S^kV^*</math> и <math>\,\mathrm{SMulti}_kV</math> отождествляются);<br>(3) <math>\iota(\mathsf\Lambda^kV^*)=\mathrm{AMulti}_kV</math> и <math>\,\mathsf\Lambda^kV^*\!\cong\mathrm{AMulti}_kV</math> (далее пространства <math>\,\mathsf\Lambda^kV^*</math> и <math>\,\mathrm{AMulti}_kV</math> отождествляются).</i> | + | <li><u>Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K\ne2</math>, <math>V</math> — вект. пр.-во над <math>K</math>,<br><math>k\in\mathbb N_0</math> и <math>\dim V<\infty</math>; обозначим через <math>\iota</math> канонический изоморфизм <math>\biggl(\!\begin{align}\mathcal T^kV^*\!&\to\mathrm{Multi}_kV\\\lambda_1\otimes\ldots\otimes\lambda_k&\mapsto\bigl((v_1,\ldots,v_k)\mapsto\lambda_1(v_1)\cdot\ldots\cdot\lambda_k(v_k)\bigr)\!\end{align}\!\biggr)</math>; тогда<br>(1) <math>\forall\,u\in\mathrm S_k\,\bigl(\iota\circ\mathrm{pat}_u=\mathrm{paf}_u\!\circ\iota\bigr)</math> (напоминание: <math>\mathrm{pat}_u(\lambda_1\otimes\ldots\otimes\lambda_k)=\lambda_{u^{-1}(1)}\!\otimes\ldots\otimes\lambda_{u^{-1}(k)}</math> и <math>(\mathrm{paf}_u(\omega))(v_1,\ldots,v_k)=\omega(v_{u(1)},\ldots,v_{u(k)})</math>);<br>(2) <math>\iota(\mathsf S^kV^*)=\mathrm{SMulti}_kV</math> и <math>\,\mathsf S^kV^*\!\cong\mathrm{SMulti}_kV</math> (далее пространства <math>\,\mathsf S^kV^*</math> и <math>\,\mathrm{SMulti}_kV</math> отождествляются при помощи изоморфизма <math>\iota</math>);<br>(3) <math>\iota(\mathsf\Lambda^kV^*)=\mathrm{AMulti}_kV</math> и <math>\,\mathsf\Lambda^kV^*\!\cong\mathrm{AMulti}_kV</math> (далее пространства <math>\,\mathsf\Lambda^kV^*</math> и <math>\,\mathrm{AMulti}_kV</math> отождествляются при помощи изоморфизма <math>\iota</math>).</i> |
<li>Оператор симметризации: <math>\mathrm{sym}_k=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{pat}_u</math>. Оператор альтернирования: <math>\mathrm{alt}_k=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{sgn}(u)\,\mathrm{pat}_u</math>. Лемма о симметризации и альтернировании. | <li>Оператор симметризации: <math>\mathrm{sym}_k=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{pat}_u</math>. Оператор альтернирования: <math>\mathrm{alt}_k=\frac1{k!}\!\sum_{u\in\mathrm S_k}\mathrm{sgn}(u)\,\mathrm{pat}_u</math>. Лемма о симметризации и альтернировании. | ||
<p><u>Лемма о симметризации и альтернировании.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) для любых <math>u\in\mathrm S_k</math> выполнено <math>\mathrm{pat}_u\!\circ\mathrm{sym}_k=\mathrm{sym}_k\circ\mathrm{pat}_u=\mathrm{sym}_k</math> и <math>\mathrm{pat}_u\!\circ\mathrm{alt}_k=\mathrm{alt}_k\circ\mathrm{pat}_u=\mathrm{sgn}(u)\,\mathrm{alt}_k</math>;<br>(2) для любых <math>T\in\mathsf S^kV</math> выполнено <math>\mathrm{sym}_k(T)=T</math> и для любых <math>T\in\mathsf\Lambda^kV</math> выполнено <math>\mathrm{alt}_k(T)=T</math>;<br>(3) <math>\mathrm{Im}\,\mathrm{sym}_k=\mathsf S^kV</math> и <math>\,\mathrm{Im}\,\mathrm{alt}_k=\mathsf\Lambda^kV</math>, а также <math>\mathrm{sym}_k^2=\mathrm{sym}_k</math> и <math>\mathrm{alt}_k^2=\mathrm{alt}_k</math> (и, значит, <math>\mathrm{sym}_k</math> — проектор на <math>\,\mathsf S^kV</math> и <math>\mathrm{alt}_k</math> — проектор на <math>\,\mathsf\Lambda^kV</math>).</i></p> | <p><u>Лемма о симметризации и альтернировании.</u> <i>Пусть <math>K</math> — поле, <math>\mathrm{char}\,K=0</math>, <math>V</math> — векторное пространство над полем <math>K</math> и <math>k\in\mathbb N_0</math>; тогда<br>(1) для любых <math>u\in\mathrm S_k</math> выполнено <math>\mathrm{pat}_u\!\circ\mathrm{sym}_k=\mathrm{sym}_k\circ\mathrm{pat}_u=\mathrm{sym}_k</math> и <math>\mathrm{pat}_u\!\circ\mathrm{alt}_k=\mathrm{alt}_k\circ\mathrm{pat}_u=\mathrm{sgn}(u)\,\mathrm{alt}_k</math>;<br>(2) для любых <math>T\in\mathsf S^kV</math> выполнено <math>\mathrm{sym}_k(T)=T</math> и для любых <math>T\in\mathsf\Lambda^kV</math> выполнено <math>\mathrm{alt}_k(T)=T</math>;<br>(3) <math>\mathrm{Im}\,\mathrm{sym}_k=\mathsf S^kV</math> и <math>\,\mathrm{Im}\,\mathrm{alt}_k=\mathsf\Lambda^kV</math>, а также <math>\mathrm{sym}_k^2=\mathrm{sym}_k</math> и <math>\mathrm{alt}_k^2=\mathrm{alt}_k</math> (и, значит, <math>\mathrm{sym}_k</math> — проектор на <math>\,\mathsf S^kV</math> и <math>\mathrm{alt}_k</math> — проектор на <math>\,\mathsf\Lambda^kV</math>).</i></p> | ||
Строка 96: | Строка 96: | ||
<li>Символы Кристоффеля: <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^ng^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{j,l}-\partial_lg_{j,k}\bigr)</math>. Теорема о связности Леви-Чивиты. Длина: <math>\int_\alpha^\beta\!\!\!\sqrt{g(\dot\gamma,\dot\gamma)}</math>; незав.-сть от параметриз.-и. | <li>Символы Кристоффеля: <math>\Gamma^i_{j,k}=\frac12\sum_{l=1}^ng^{i,l}\bigl(\partial_jg_{k,l}+\partial_kg_{j,l}-\partial_lg_{j,k}\bigr)</math>. Теорема о связности Леви-Чивиты. Длина: <math>\int_\alpha^\beta\!\!\!\sqrt{g(\dot\gamma,\dot\gamma)}</math>; незав.-сть от параметриз.-и. | ||
<p><u>Теорема о связности Леви-Чивиты.</u> <i>Пусть <math>M</math> — псевдориманово многообразие; тогда<br>(1) символы Кристоффеля на <math>M</math> преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют<br>операцию ковариантной производной <math>\nabla</math> на <math>M</math> (она называется связностью Леви-Чивиты), причем эта операция обладает следующими свойствами:<br><math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\nabla_vw-\nabla_wv=[v,w]\bigr)</math> и <math>\forall\,u,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_u(g(v,w))=g(\nabla_uv,w)+g(v,\nabla_uw)\bigr)</math>;<br>(2) операция ковариантной производной <math>\nabla</math> на <math>M</math>, обладающая свойствами из пункта (1), определена однозначно (без доказательства).</i></p> | <p><u>Теорема о связности Леви-Чивиты.</u> <i>Пусть <math>M</math> — псевдориманово многообразие; тогда<br>(1) символы Кристоффеля на <math>M</math> преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют<br>операцию ковариантной производной <math>\nabla</math> на <math>M</math> (она называется связностью Леви-Чивиты), причем эта операция обладает следующими свойствами:<br><math>\forall\,v,w\in\mathrm{Vect}(M)\;\bigl(\nabla_vw-\nabla_wv=[v,w]\bigr)</math> и <math>\forall\,u,v,w\in\mathrm{Vect}(M)\;\bigl(\mathcal L_u(g(v,w))=g(\nabla_uv,w)+g(v,\nabla_uw)\bigr)</math>;<br>(2) операция ковариантной производной <math>\nabla</math> на <math>M</math>, обладающая свойствами из пункта (1), определена однозначно (без доказательства).</i></p> | ||
− | <li>Геодезические — экстремали функционала длины. Условие на геодезические (ур.- | + | <li>Геодезические — экстремали функционала длины. Условие на геодезические (ур.-е Эйлера–Лагранжа для функционала длины): <math>\ddot\gamma=0</math> (если <math>g(\dot\gamma,\dot\gamma)=1</math>). |
<li>Тензор Римана (кривизны): <math>\mathrm R^i_{j,k,l}=\partial_k\Gamma^i_{l,j}-\partial_l\Gamma^i_{k,j}+\sum_{t=1}^n\bigl(\Gamma^i_{k,t}\Gamma^t_{l,j}-\Gamma^i_{l,t}\Gamma^t_{k,j}\bigr)</math>. Тензор Риччи: <math>\mathrm R_{i,j}=\sum_{t=1}^n\mathrm R^t_{i,t,j}</math>. Скалярная кривизна: <math>\mathrm R=\!\!\sum_{1\le i,j\le n}\!\!g^{i,j}\,\mathrm R_{i,j}</math>.</ul> | <li>Тензор Римана (кривизны): <math>\mathrm R^i_{j,k,l}=\partial_k\Gamma^i_{l,j}-\partial_l\Gamma^i_{k,j}+\sum_{t=1}^n\bigl(\Gamma^i_{k,t}\Gamma^t_{l,j}-\Gamma^i_{l,t}\Gamma^t_{k,j}\bigr)</math>. Тензор Риччи: <math>\mathrm R_{i,j}=\sum_{t=1}^n\mathrm R^t_{i,t,j}</math>. Скалярная кривизна: <math>\mathrm R=\!\!\sum_{1\le i,j\le n}\!\!g^{i,j}\,\mathrm R_{i,j}</math>.</ul> |
Версия 23:00, 12 ноября 2018
Подробный план второй половины третьего семестра курса алгебры
|
14 Тензорные произведения векторных пространств
14.1 Определения и конструкции, связанные с тензорами
- Тензорное произведение вект. пространств: , где и — подпространство полилинеаризации.
- Разложимый тензор: . Ранг тензора : — минимум среди всех таких , что равен сумме разл. тензоров.
- Лемма к теореме об универсальности тензорного произведения. Пусть — поле, и — векторные простр.-ва над полем ; тогда
и отображение — полилинейный оператор. - Теорема об универсальности тензорного произведения. Пусть — поле, и — вект. простр.-ва над полем ; тогда для любых
существ. единств. такой , что
(и, значит, отображение — изоморфизм векторных пространств). - Теорема о базисе тензорного произведения. Пусть — поле, , — векторные пространства над полем и — базисы
пространств соответственно; тогда все тензоры , где , попарно различны и вместе образуют базис
пространства , а также, если , то . - Тензорное произв.-е тензоров: . Тензорное произв.-е линейных операторов (, ): .
- Первая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда ,
и . - Вторая теорема о канонических изоморфизмах. Пусть — поле и — векторные пространства над полем ; тогда
(1) — инъективный линейный оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в;
(2) — инъект. лин. оператор и, если , то это отображ.-е — изоморфизм вект. простр.-в.
14.2 Тензоры типа и тензорная алгебра
- Пространство тензоров типа над : . Примеры: , , , , .
- Примеры: — простр.-во структур алгебры на , — простр.-во структур коалгебры на , .
- Теорема о канонических изоморфизмах для тензоров типа (p,q). Пусть — поле, — вект. простр.-во над полем , и ; тогда
(1) — изоморфизм векторных пространств;
(2) — изоморфизм векторных пространств;
(3) — изоморфизм вект. простр.-в. - Тензор типа в координатах: . Примеры: , , .
- Примеры: — метрический тензор, — форма объема, связанная с упоряд. базисом .
- Преобразование при замене базиса: . Примеры: , .
- Тензорная алгебра над : — ассоциативная -алгебра с (в опр.-и умнож.-я используются изоморфизмы ).
- Теорема о тензорной алгебре. Пусть — поле, — векторное пространство над полем , и ; тогда множество
— базис алгебры , и для любых его элементов и выполнено
, а также — алгебра многочленов от своб. перем.-х.
14.3 Операции над тензорами
- Тензоры с пропусками индексов. Тензорное пр.-е тензоров в коорд.-х: . Кронекерово пр.-е матриц.
- Перестановка компонент: . Действие группы . Перест.-ка в коорд.-х: .
- Свертка по -й и -й позициям: .
- Свертка по -й и -й позициям в координатах: . Теорема о свертках тензоров малой валентности.
Теорема о свертках тензоров малой валентности. Пусть — поле, — векторное пространство над полем и ; тогда
(1) для любых , и выполнено , , и ;
(2) для любых и выполнено и . - Теорема об обратном метрическом тензоре. Пусть — поле, — вект. пр.-во над , , и форма невырождена; тогда
(1) для любых выполнено (тензор — обратный тензор по отношению к тензору );
(2) под действием канонического изоморфизма тензор переходит в форму ;
(3) для любых выполнено . - Опускание индекса с -й позиции: . Подъем индекса с -й поз.-и: .
- Опускание индекса с -й позиции в коорд. (применение операции выражается в располож.-и индексов): .
- Подъем индекса с -й позиции в коорд. (применение операции выражается в расположении индексов): .
15 Симметрические и внешние степени векторных пространств
15.1 Определения и конструкции, связанные с симметричными и антисимметричными тензорами
- Симметрическая степень: . Внешняя степень: .
- Теорема о симметричных и антисимметричных ковариантных тензорах и полилинейных формах. Пусть — поле, , — вект. пр.-во над ,
и ; обозначим через канонический изоморфизм ; тогда
(1) (напоминание: и );
(2) и (далее пространства и отождествляются при помощи изоморфизма );
(3) и (далее пространства и отождествляются при помощи изоморфизма ). - Оператор симметризации: . Оператор альтернирования: . Лемма о симметризации и альтернировании.
Лемма о симметризации и альтернировании. Пусть — поле, , — векторное пространство над полем и ; тогда
(1) для любых выполнено и ;
(2) для любых выполнено и для любых выполнено ;
(3) и , а также и (и, значит, — проектор на и — проектор на ). - Симметрич. и внешнее произв.-е векторов: и . Пример: .
- Лемма к теореме об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр. над и ; тогда
(1) и отображение — симметричный полилинейный оператор;
(2) и отображение — антисимметричный полилинейный оператор. - Теорема об универсальности симметрической степени и внешней степени. Пусть — поле, , — вект. пр.-ва над и ; тогда
(1) для любых существует единственный такой , что ;
(2) для любых существует единственный такой , что . - Теорема о базисе симметрической степени и внешней степени. Пусть — поле, , — векторное пространство над полем , ,
и ; тогда
(1) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(2) все тензоры , где и , попарно различны и вместе образуют базис пространства ;
(3) и . - Симметрич. и внешняя степени лин. оператора (): и .
15.2 Симметрическая алгебра и внешняя алгебра
- Симметрическое произв.-е и внешнее произв.-е тензоров (, ): и .
- Симметриз.-я и альтерн.-е в коорд.: и .
- Симметрическое и внешнее произв. в коорд.: и .
- Теорема о симметрическом произведении и внешнем произведении тензоров. Пусть — поле, , — векторное простр.-во над полем ,
, и , , ; тогда
(1) и ;
(2) и ;
(3) и ;
(4) и ;
(5) и . - Симметрическая алгебра (алгебра симметричных контравариантных тензоров) над : — ассоциативная коммутативная -алгебра с .
- Внешняя алгебра (алгебра антисимметричных контравариантных тенз.-в) над : — ассоциативная суперкоммутативная -алгебра с .
- Теорема о симметрической алгебре и внешней алгебре. Пусть — поле, , — вект. пр.-во над , и ; тогда
(1) — базис алгебры , и для любых его элементов и
выполнено , где числа суть числа , упорядоченные по неубыванию;
(2) — базис алгебры , и для любых его элементов и
выполнено , где суть , упоряд. по неубыванию;
(3) — алгебра многочленов от коммут. перем.-х, и — алгебра многочленов от антикоммут. перем.-х.
15.3 Операции над внешними формами
- Теорема о внешнем произведении антисимметричных полилинейных форм. Пусть — поле, , — векторное пространство над полем ,
, и ; тогда
(1) если , то для любых выполнено ;
(2) для любых выполнено . - Внутреннее произведение с вектором : .
- (то есть — супердифференцирование алгебры ).
- Векторное произведение в коорд.-х: .
- Оператор Ходжа в псевдоевклид. пр.-ве с ориентацией: . Пример: .
- Пример: . Лемма об операторе Ходжа в координатах. Теорема об операторе Ходжа и внешнем произведении.
Лемма об операторе Ходжа в координатах. Пусть — псевдоевклид. пр.-во с ориент., , , и ; тогда
(1) для любых и выполнено ;
(2) для любых и выполнено , где
образуют дополнительный набор к (то есть и ); в частности, .Теорема об операторе Ходжа и внешнем произведении. Пусть — псевдоевкл. пр.-во с ориент., , и ; тогда
(1) для любых выполнено (и, значит, — изоморфизм векторных пространств);
(2) для любых выполнено , где (в координатах );
(3) для любых выполнено ;
(4) если , то для любых выполнено .
16 Многообразия (часть 2)
16.1 Векторные поля, ковекторные поля, тензорные поля
- Касательное и кокасательное расслоения: и . Структура многообр.-я на и ; отобр.-е проекции на : .
- Пр.-ва векторн. полей и ковект. полей (-форм): и .
- Умножение вект. полей и -форм на функции. Действие -форм на вект. поля. Локальные вект. поля и -формы . Утверждение: .
- Векторные поля и -формы в коорд.: и . Преобраз.-я при замене коорд.: и .
- Расслоение тензоров типа : . Пр.-во тензорн. полей типа : .
- В коорд.: . Пример: — поле форм от перем.-х.
- Преобр.-е координат тензорного поля при замене координат на : .
- Пр.-во дифференциальн. -форм: . Алгебра диффер. форм: .
16.2 Дифференциальные операции на многообразиях
- Производная Ли: . Утверждение: и . Коммутатор вект. полей: .
- Теорема о коммутаторе. Пусть — многообразие и ; тогда
(1) для любых , определяя в координатах векторное поле на по формуле , имеем
следующие факты: это определение не зависит от выбора системы координат, и операция удовлетворяет определению коммутатора;
(2) операция коммутатора на определена однозначно;
(3) — алгебра Ли относ.-но операции , и отобр.-е — изоморфизм алгебр Ли (без док.-ва сюръективности). - Внешний дифференциал: — супердифференц.-е алгебры и . Утверждение: .
- Теорема о внешнем дифференциале. Пусть — многообразие и ; тогда
(1) для любых и , определяя в координатах форму на по формуле
(эта формула эквивалентна формуле ), имеем следующие факты: это определение не зависит от
выбора системы координат (эскиз доказательства), и операция удовлетворяет определению внешнего дифференциала;
(2) операция внешнего дифференциала на определена однозначно. - Утверждение: . Замкнутая форма: . Точная форма: (). Лемма Пуанкаре: в замкнутые формы точны (без доказат.-ва).
- Ковариантная произв. вект. полей: и .
- Теорема о ковариантной производной. Пусть — многообразие, и в каждой системе координат из атласа на заданы функции ,
где , преобразующиеся при замене координ. по формуле ;
тогда для любых , определяя в координ. векторное поле на по формуле , имеем
следующие факты: это определение не зависит от выбора системы координат, и операция удовлетворяет определению ковариантной произв.-й. - Векторное поле вдоль кривой: и . Скорость вдоль : . Ускорение: .
16.3 Римановы и псевдоримановы многообразия (основные определения и примеры)
- Метрический тензор сигнатуры : и для любых выполнено — невыр. симметр. билин. форма сигнатуры на .
- Псевдориманово многообр. сигнат. — многообр. с метр. тензором сигнат. . Риманово многообр.: . Примеры: , пр.-во Лобачевского .
- Бемоль: . Диез: . Градиент функции: . Градиент в коорд.: .
- Ориентация многообр. — такой выбор ориентаций всех пр.-в , где , что . Атлас .
- Канонич. форма объема. Оператор Ходжа: . Ротор: . Дивергенция: . Лапласиан: .
- Символы Кристоффеля: . Теорема о связности Леви-Чивиты. Длина: ; незав.-сть от параметриз.-и.
Теорема о связности Леви-Чивиты. Пусть — псевдориманово многообразие; тогда
(1) символы Кристоффеля на преобразуются при замене координат по формуле из теоремы о ковариантной производной и, значит, определяют
операцию ковариантной производной на (она называется связностью Леви-Чивиты), причем эта операция обладает следующими свойствами:
и ;
(2) операция ковариантной производной на , обладающая свойствами из пункта (1), определена однозначно (без доказательства). - Геодезические — экстремали функционала длины. Условие на геодезические (ур.-е Эйлера–Лагранжа для функционала длины): (если ).
- Тензор Римана (кривизны): . Тензор Риччи: . Скалярная кривизна: .